Ship anti-rolling devices are an essential component of modern vessels. The core component of the Magnus effect-based ship anti-rolling device is a rotating cylinder, hereinafter referred to as the Magnus cylinders. In this paper, fully parametric three-dimensional modeling of Magnus cylinders was performed, and the design space dimension was reduced using the Sobol design optimization method while still providing accurate and reliable results. The Sobol method generates quasi-random sequences that are more uniformly spaced in the search space and can more efficiently cover the entire solution space. The shape optimization study of the Magnus cylinder was carried out in conjunction with the computational fluid dynamics method to find the geometry of the Magnus cylinder with excellent hydrodynamic performance. Critical design parameters include the diameters of the cylinder ends and the length of the cylinder. The hydrodynamic and flow field characteristics of Magnus cylinders before and after the optimization were compared. The results show that there can be multiple local optimal values for lift and drag of Magnus cylinders within the design space to increase the lift and decrease the drag. The Magnus effect primarily influences the position of the vortex-shedding separation point at the surface of Magnus cylinders and deflects the wake to one side. For the optimized Magnus cylinder, the distribution of pressure and velocity in the flow field is significantly different. This research forms the basis for improving the practical application of Magnus anti-rolling devices.

1.
Y.
Su
,
J.
Lin
,
D.
Zhao
,
C.
Guo
,
C.
Wang
, and
H.
Guo
, “
Real-time prediction of large-scale ship model vertical acceleration based on recurrent neural network
,”
J. Mar. Sci. Eng.
8
,
777
(
2020
).
2.
J.
Lin
,
D.
Zhao
,
C.
Guo
,
Y.
Su
, and
X.
Zhong
, “
Comprehensive test system for ship-model resistance and propulsion performance in actual seas
,”
Ocean Eng.
197
,
106915
(
2020
).
3.
H.
Demirel
, “
A novel fuzzy multi-criteria decision-making methodology based upon the spherical fuzzy sets for stabilizer selection of cruise ships
,”
Brodogradnja
71
,
1
(
2020
).
4.
S. D.
Lee
,
B. D.
Phuc
,
X.
Xu
, and
S. S.
You
, “
Roll suppression of marine vessels using adaptive super-twisting sliding mode control synthesis
,”
Ocean Eng.
195
,
106724
(
2020
).
5.
N.
Patil
and
S.
Rajendran
, “A time-domain method for analyzing the ship roll stabilization based on active fin control,”
Ocean Syst. Eng.
11
,
275
(
2021
).
6.
T. Y.
Chung
,
S. J.
Moon
,
J.
Lew
,
C. H.
Park
,
H. W.
Cho
,
B. I.
Kim
,
H. K.
Yoon
, and
J. Y.
Kang
, “
A study on conceptual design of anti-rolling devices for 250 TEU Class Mobile Harbors
,”
Trans. Korean Soc. Automot. Eng.
20
,
629
(
2010
).
7.
B. U.
Taskar
,
D.
DasGupta
,
V.
Nagarajan
,
S.
Chakraborty
,
A.
Chatterjee
, and
O. P.
Sha
, “
CFD aided modelling of anti-rolling tanks towards more accurate ship dynamics
,”
Ocean Eng.
92
,
296
(
2014
).
8.
K. S.
Kim
and
B. H.
Lee
, “
Simulation of vessel motion control by Anti-Rolling tank
,”
J. Ocean Eng. Technol.
32
,
440
(
2018
).
9.
R.
Shafaghat
, “
Selection the optimum dimensions for flywheel of Anti-Rolling Gyro which installation on high speed craft
,”
J. Mar. Sci. Technol.
20
,
109
(
2021
).
10.
A. R.
Teymourtash
and
S. E.
Salimipour
, “
Compressibility effects on the flow past a rotating cylinder
,”
Phys. Fluids
29
,
016101
(
2017
).
11.
T. K.
Sengupta
and
D.
Patidar
, “
Flow past a circular cylinder executing rotary oscillation: Dimensionality of the problem
,”
Phys. Fluids
30
,
093602
(
2018
).
12.
N.
Ganta
,
B.
Mahato
, and
Y. G.
Bhumkar
, “
Analysis of sound generation by flow past a circular cylinder performing rotary oscillations using direct simulation approach
,”
Phys. Fluids
31
,
026104
(
2019
).
13.
J.
Sierra
,
D.
Fabre
,
V.
Citro
, and
F.
Giannetti
, “
Bifurcation scenario in the two-dimensional laminar flow past a rotating cylinder
,”
J. Fluid Mech.
905
,
A2
(
2020
).
14.
J.
Seifert
, “
A review of the Magnus effect in aeronautics
,”
Prog. Aerosp. Sci.
55
,
17
(
2012
).
15.
L. W.
Alaways
and
M.
Hubbard
, “
Experimental determination of baseball spin and lift
,”
J. Sports Sci.
19
,
349
(
2001
).
16.
N.
Sakib
and
B. L.
Smith
, “
Study of the reverse Magnus effect on a golf ball and a smooth ball moving through still air
,”
Exp. Fluids
61
,
115
(
2020
).
17.
L.
Prandtl
, “
Magnuseffekt und Windkraftschiff
,”
Sci. Nat.
13
,
93
(
1925
).
18.
S.
Kumar
,
B.
Gonzalez
, and
O.
Probst
, “
Flow past two rotating cylinders
,”
Phys. Fluids
23
,
014102
(
2011
).
19.
S. J.
Karabelas
,
B. C.
Koumroglou
,
C. D.
Argyropoulos
, and
N. C.
Markatos
, “
High Reynolds number turbulent flow past a rotating cylinder
,”
Appl. Math. Model.
36
,
379
(
2012
).
20.
W. M.
van Rees
,
G.
Novati
, and
P.
Koumoutsakos
, “
Self-propulsion of a counter-rotating cylinder pair in a viscous fluid
,”
Phys. Fluids
27
,
063102
(
2015
).
21.
N.
Lopez
,
B.
Mara
,
B.
Mercado
,
L.
Mercado
,
M.
Pascual
, and
M. A.
Promentilla
, “
Design of modified Magnus wind rotors using computational fluid dynamics simulation and multi-response optimization
,”
J. Renewable Sustainable Energy
7
,
063135
(
2015
).
22.
K. W.
Wong
,
J.
Zhao
,
D. L.
Jacono
,
M. C.
Thompson
, and
J.
Sheridan
, “
Experimental investigation of flow-induced vibration of a rotating circular cylinder
,”
J. Fluid Mech.
829
,
486
(
2017
).
23.
K. W.
Wong
,
J.
Zhao
,
D. L.
Jacono
,
M. C.
Thompson
, and
J.
Sheridan
, “
Experimental investigation of flow-induced vibration of a sinusoidally rotating circular cylinder
,”
J. Fluid Mech.
848
,
430
(
2018
).
24.
A.
Munir
,
M.
Zhao
,
H.
Wu
, and
F.
Tong
, “
Flow-induced vibration of a rotating circular cylinder at high reduced velocities and high rotation rates
,”
Ocean Eng.
238
,
109562
(
2021
).
25.
L.
Liang
,
P.
Zhao
,
S.
Zhang
,
J.
Yuan
, and
Y.
Wen
, “
Simulation and analysis of Magnus rotating roll stabilizer at low speed
,”
Ocean Eng.
142
,
491
(
2017
).
26.
L.
Liang
,
Y.
Jiang
,
Q.
Zhang
, and
Z.
Le
, “
Aspect ratio effects on hydrodynamic characteristics of Magnus stabilizers
,”
Ocean Eng.
216
,
107699
(
2020
).
27.
L.
Liang
,
Y.
Jiang
,
W.
Kang
, and
P.
Zhao
, “Magnus stabilizer and analysis of its lift/drag characteristics,”
J. Harbin Eng. Univ.
42
,
555
(
2021
).
28.
D.
Ozturk
, “
Performance of a Magnus effect-based cylindrical roll stabilizer on a full-scale Motor-yacht
,”
Ocean Eng.
218
,
108247
(
2020
).
29.
H.
Akyildiz
and
Ö. İ.
Aydin
, “
On the Magnus rotating roll stabilizer; numerical and experimental studies
,”
GİDB Dergi
22
,
37
(
2022
).
30.
J.
Lin
,
Y.
Han
,
Y.
Su
,
Y.
Wang
,
Z.
Zhang
, and
R.
Jiang
, “
Hydrodynamic performance of a Magnus anti-rolling device at zero and low ship speeds
,”
Ocean Eng.
229
,
109008
(
2021
).
31.
J.
Lin
,
Y.
Han
,
Y.
Su
, and
Z.
Zhang
, “
Magnus antirolling system for ships at zero speed
,”
IEEE Trans. Transp. Electrification
7
,
3062
(
2021
).
32.
J.
Lin
,
C.
Guo
,
D.
Zhao
,
Y.
Han
, and
Y.
Su
, “
Hydrodynamic simulation for evaluating Magnus anti-rolling devices with varying angles of attack
,”
Ocean Eng.
260
,
111949
(
2022
).
33.
J.
Lin
,
Y.
Han
,
C.
Guo
,
Y.
Su
, and
R.
Zhong
, “
Intelligent ship anti-rolling control system based on a deep deterministic policy gradient algorithm and the Magnus effect
,”
Phys. Fluids
34
,
057102
(
2022
).
34.
R.
Sacks
and
R.
Barak
, “
Impact of three-dimensional parametric modeling of buildings on productivity in structural engineering practice
,”
Autom. Constr.
17
,
439
(
2008
).
35.
M.
Stavric
and
O.
Marina
, “Parametric modeling for advanced architecture,”
Int. J. Appl. Math. Inform.
5
,
9
(
2011
).
36.
Y. M.
Saint-Drenan
,
R.
Besseau
,
M.
Jansen
,
I.
Staffell
,
A.
Troccoli
,
L.
Dubus
,
J.
Schmidt
,
K.
Gruber
,
S. G.
Simões
, and
S.
Heier
, “
A parametric model for wind turbine power curves incorporating environmental conditions
,”
Renewable Energy
157
,
754
(
2020
).
37.
E. F.
Campana
,
D.
Peri
,
Y.
Tahara
, and
F.
Stern
, “
Shape optimization in ship hydrodynamics using computational fluid dynamics
,”
Comput. Methods Appl. Mech. Eng.
196
,
634
(
2006
).
38.
S.
Han
,
Y. S.
Lee
, and
Y. B.
Choi
, “
Hydrodynamic hull form optimization using parametric models
,”
J. Mar. Sci. Technol.
17
(
1
),
1
17
(
2012
).
39.
A.
Priftis
,
E.
Boulougouris
,
O.
Turan
, and
A.
Papanikolaou
, “
Parametric design and multi-objective optimisation of containerships
,”
Ocean Eng.
156
,
347
(
2018
).
40.
S.
Harries
and
S.
Uharek
, “
Application of radial basis functions for partially-parametric modeling and principal component analysis for faster hydrodynamic optimization of a catamaran
,”
J. Mar. Sci. Eng.
9
,
1069
(
2021
).
41.
R.
Şener
and
M. Z.
Gül
, “
Optimization of the combustion chamber geometry and injection parameters on a light-duty diesel engine for emission minimization using multi-objective genetic algorithm
,”
Fuel
304
,
121379
(
2021
).
42.
L.
Nikolopoulos
and
E.
Boulougouris
, “
A novel method for the holistic, simulation driven ship design optimization under uncertainty in the big data era
,”
Ocean Eng.
218
,
107634
(
2020
).
43.
H. W.
Maia
,
S.
Mounsif
,
J. V.
Hernández-Fontes
, and
R.
Silva
, “
Computational fluid dynamics applied to river boat hull optimization
,”
Mar. Technol. Soc. J.
55
,
94
(
2021
).
44.
S.
Sirsant
and
M. J.
Reddy
, “
Improved MOSADE algorithm incorporating Sobol sequences for multi-objective design of Water Distribution Networks
,”
Appl. Soft Comput.
120
,
108682
(
2022
).
45.
M.
Pant
,
R.
Thangaraj
,
V. P.
Singh
, and
A.
Abraham
, “
Particle swarm optimization using Sobol mutation
,” in
IEEE First International Conference on Emerging Trends in Engineering and Technology
(
2008
), Vol.
367
.
46.
J.
Gong
,
W.
Luo
,
T.
Wu
, and
Z.
Zhang
, “
Numerical analysis of vortex and cavitation dynamics of an axial-flow pump
,”
Eng. Appl. Comput. Fluid Mech.
16
,
1921
(
2022
).
47.
J.
Lin
,
D.
Zhao
,
C.
Guo
,
Z.
Zhang
, and
Y.
Su
, “
Numerically modeling the effect of flexibility on flow around marine engineering structures: Using the shape of the Saguaro Cactus
,”
J. Coastal Res.
36
,
628
(
2020
).
48.
J.
Gong
,
J.
Ding
, and
L.
Wang
, “
Propeller–duct interaction on the wake dynamics of a ducted propeller
,”
Phys. Fluids
33
,
074102
(
2021
).
49.
M.
Ottersten
,
H.
Yao
, and
L.
Davidson
, “
Tonal noise of voluteless centrifugal fan generated by turbulence stemming from upstream inlet gap
,”
Phys. Fluids
33
,
075110
(
2021
).
50.
J.
Gong
,
Z.
Wu
,
J.
Ding
,
J.
Jiang
, and
Z.
Zhang
, “
Numerical analysis of propulsion performance of a waterjet-propelled vehicle in steady drift
,”
Ocean Eng.
266
,
113136
(
2022
).
51.
A.
Amarloo
,
P.
Forooghi
, and
M.
Abkar
, “
Frozen propagation of Reynolds force vector from high-fidelity data into Reynolds-averaged simulations of secondary flows
,”
Phys. Fluids
34
,
115102
(
2022
).
52.
C.
Guo
,
C.
Yang
,
C.
Sun
,
C.
Wang
,
H.
Yao
, and
J.
Lin
, “
Numerical investigation of the scale effects of pump-jet propulsor with a pre-swirl stator
,”
Phys. Fluids
35
,
027115
(
2023
).
53.
C. F.
Matozinhos
and
Y.
Hassan
, “
Scale-resolving simulations of the flow in a nuclear fuel bundle with a channel spacer grid using partially averaged Navier–Stokes and large-eddy simulation
,”
Phys. Fluids
35
,
015115
(
2023
).
54.
H.
Yao
and
L.
Davidson
, “
Generation of interior cavity noise due to window vibration excited by turbulent flows past a generic side-view mirror
,”
Phys. Fluids
30
,
036104
(
2018
).
55.
X.
Xue
,
H.
Yao
, and
L.
Davidson
, “
Synthetic turbulence generator for lattice Boltzmann method at the interface between RANS and LES
,”
Phys. Fluids
34
,
055118
(
2022
).
56.
J.
Nagao
,
A. L.
Pillai
,
T.
Shoji
,
S.
Tachibana
,
T.
Yokomori
, and
R.
Kurose
, “
Numerical investigation of wall effects on combustion noise from a lean-premixed hydrogen/air low-swirl flame
,”
Phys. Fluids
35
,
014109
(
2023
).
57.
I.
Rodriguez
,
O.
Lehmkuhl
,
U.
Piomelli
,
J.
Chiva
,
R.
Borrell
, and
A.
Oliva
, “
LES-based study of the roughness effects on the wake of a circular cylinder from subcritical to transcritical Reynolds Numbers
,”
Flow Turbul. Combust.
99
,
729
(
2017
).
58.
W. M.
Swanson
, “
The Magnus effect: A summary of investigations to date
,”
J. Basic Eng.
83
,
461
(
1961
).
59.
W.
Cheng
,
D. I.
Pullin
, and
R.
Samtaney
, “
Large-eddy simulation of flow over a rotating cylinder: The lift crisis at ReD = 6 × 104
,”
J. Fluid Mech.
855
,
371
(
2018
).
60.
P. J.
Roache
, “
Perspective: A method for uniform reporting of grid refinement studies
,”
J. Fluids Eng.
116
,
405
(
1994
).
61.
S.
Park
,
G.
Oh
,
S. H.
Rhee
,
B. Y.
Koo
, and
H.
Lee
, “
Full scale wake prediction of an energy saving device by using computational fluid dynamics
,”
Ocean Eng.
101
,
254
(
2015
).
62.
Y.
Su
,
J.
Lin
,
D.
Zhao
,
C.
Guo
, and
H.
Guo
, “
Influence of a pre-swirl stator and rudder bulb system on the propulsion performance of a large-scale ship model
,”
Ocean Eng.
218
,
108189
(
2020
).
63.
Recommended Procedures and Guidelines
, “
Uncertainty analysis in CFD verification and validation, methodology and procedures
,” in
ITTC Proceedings of the 28th International Towing Tank Conference
(
2017
).
You do not currently have access to this content.