This paper experimentally investigates the vertical high-speed water entry of a semi-sealed cylindrical shell, which has one end sealed and one end opened. The unsteady water-entry cavitating flow characteristics of the shell are analyzed, and the evolution of cavities and jet impacts with different structures is studied. The results show that a nested multi-cavity is generated due to the self-jet phenomenon during water entry. The jet causes the diameter of the secondary cavity to be much larger than that of the primary cavity, and the morphology of the secondary cavity is more atomized. Due to the irregular motion of the jet, the primary cavity undergoes neck-shrinking phenomenon and is compressed, and the neck-shrinking position moves up as the secondary cavity grows. After secondary impact, a small jet appears at the bottom of the shell, which ejects out from the shell and increases the size of the bottom cavity, leading to the formation of quaternary cavity. Moreover, as the inner wall length increases, the time of the primary jet is advanced, while the depth of secondary cavity shortens. With the increase in the thickness, cavity shape becomes more similar to traditional supercavity, and the maximum diameter of the primary cavity increases.

1.
Akbari
,
M. A.
,
Mohammadi
,
J.
, and
Fereidooni
,
J.
, “
A dynamic study of the high-speed oblique water entry of a stepped cylindrical-cone projectile
,”
J. Braz. Soc. Mech. Sci. Eng.
43
(
1
),
2
(
2021
).
2.
Aristoff
,
J. M.
,
Truscott
,
T. T.
,
Techet
,
A. H.
, and
Bush
,
J. W. M.
, “
The water entry of decelerating spheres
,”
Phys. Fluids
22
(
3
),
032102
(
2010
).
3.
Banks
,
R. B.
and
Bhavamai
,
A.
, “
Experimental study on the impingement of a liquid jet on the surface of a heavier liquid
,”
J. Fluid Mech.
23
(
2
),
229
240
(
1965
).
4.
Banks
,
R. B.
and
Chandrasekhara
,
D. V.
, “
Experimental investigation of the penetration of a high-velocity gas jet through a liquid surface
,”
J. Fluid Mech.
15
(
1
),
13
34
(
1963
).
5.
Chen
,
T.
,
Huang
,
W.
,
Zhang
,
W.
,
Qi
,
Y. F.
, and
Guo
,
Z. T.
, “
Experimental investigation on trajectory stability of high-speed water entry projectiles
,”
Ocean Eng.
175
,
16
24
(
2019
).
6.
Chen
,
C.
,
Ma
,
Q. P.
,
Wei
,
Y. J.
, and
Wang
,
C.
, “
Experimental study on the cavity dynamics in high-speed oblique water-entry
,”
Fluid Dyn. Res.
50
(
4
),
045511
(
2018
).
7.
Du
,
Y.
,
Wang
,
Z. Y.
,
Wang
,
Y. W.
,
Wang
,
J. Z.
,
Qiu
,
R. D.
, and
Huang
,
C. G.
, “
Study on the cavity dynamics of water entry for horizontal objects with different geometrical shapes
,”
Ocean Eng.
252
,
111242
(
2022
).
8.
Güzel
,
B.
and
Korkmaz
,
F. C.
, “
Reducing water entry impact loads on offshore marine structures by forced air entrapment
,”
Ships Offshore Struct.
15
(
9
),
942
952
(
2020
).
9.
Hong
,
Y.
,
Zhao
,
Z. X.
,
Gong
,
Z. X.
, and
Liu
,
H.
, “
Cavity dynamics in the oblique water entry of a cylinder at constant velocity
,”
Phys. Fluids
34
(
2
),
021703
021707
(
2022
).
10.
Hou
,
Y.
,
Huang
,
Z. G.
,
Chen
,
Z. H.
,
Guo
,
Z. Q.
, and
Xu
,
Y. M.
, “
Experimental investigations on the oblique water entry of hollow cylinders
,”
Ocean Eng.
266
,
112800
(
2022
).
11.
Hurd
,
R. C.
,
Belden
,
J.
,
Jandron
,
M. A.
,
Fanning
,
D. T.
,
Bower
,
A. F.
, and
Truscott
,
T. T.
, “
Water entry of deformable spheres
,”
J. Fluid Mech.
824
,
912
930
(
2017
).
12.
Iafrati
,
A.
,
Grizzi
,
S.
,
Siemann
,
M. H.
, and
Montañés
,
L. B.
, “
High-speed ditching of a flat plate: Experimental data and uncertainty assessment
,”
J. Fluids Struct.
55
,
501
525
(
2015
).
13.
Jalaal
,
M.
,
Kemper
,
D.
, and
Lohse
,
D.
, “
Viscoplastic water entry
,”
J. Fluid Mech.
864
,
596
613
(
2019
).
14.
Jamali
,
M.
,
Rostamijavanani
,
A.
,
Nouri
,
N. M.
, and
Navidbakhsh
,
M.
, “
An experimental study of cavity and Worthington jet formations caused by a falling sphere into an oil film on water
,”
Appl. Ocean Res.
102
,
102319
(
2020
).
15.
Lee
,
M.
,
Longoria
,
R. G.
, and
Wilson
,
D. E.
, “
Cavity dynamics in high-speed water entry
,”
Phys. Fluids
9
(
3
),
540
550
(
1997
).
16.
Liu
,
H.
,
Pi
,
J. T.
,
Zhou
,
B.
,
Chen
,
L.
,
Fu
,
Q.
, and
Zhang
,
G. Y.
, “
Experimental investigation on the multiphase flow characteristics of oblique water entry of semi-closed cylinder
,”
Ocean Eng.
239
,
109819
(
2021
).
17.
Lu
,
Z. L.
,
Wei
,
Y. J.
,
Wang
,
C.
, and
Cao
,
W.
, “
Experimental and numerical investigation on the flow structure and instability of water-entry cavity by a semi-closed cylinder
,”
Acta Phys. Sin.
66
(
6
),
064702
(
2017
).
18.
Lyu
,
X. J.
,
Wang
,
X.
,
Yun
,
H. L.
, and
Chen
,
Z. H.
, “
On water-entry modes of the latter sphere in tandem configuration with two spheres
,”
J. Fluids Struct.
112
,
103601
(
2022
).
19.
Mehri
,
A.
and
Akbarzadeh
,
P.
, “
Hydrodynamic characteristics of heated/non-heated and grooved/un-grooved spheres during free-surface water entry
,”
J. Fluids Struct.
97
,
103100
(
2020
).
20.
Mehri
,
A.
and
Akbarzadeh
,
P.
, “
Water entry of grooved spheres: Effect of the number of grooves and impact velocity
,”
J. Fluids Struct.
100
,
103198
(
2021
).
21.
Rosselló
,
J. M.
,
Reese
,
H.
, and
Ohl
,
C. D.
, “
Dynamics of pulsed laser-induced cavities on a liquid-gas interface: From a conical splash to a ‘bullet’ jet
,”
J. Fluid Mech.
939
,
A35
(
2022
).
22.
Sharker
,
S. I.
,
Holekamp
,
S.
,
Mansoor
,
M. M.
,
Fish
,
F. E.
, and
Truscott
,
T. T.
, “
Water entry impact dynamics of diving birds
,”
Bioinspiration Biomimetics
14
(
5
),
056013
(
2019
).
23.
She
,
W. X.
,
Zhou
,
G. L.
,
Guo
,
C. Y.
,
Wu
,
T. C.
, and
Song
,
K. W.
, “
Experimental investigation on the water entry of a bulbous bow based on TR-PIV
,”
Ocean Eng.
229
,
108977
(
2021
).
24.
Shi
,
H. H.
,
Itoh
,
M.
, and
Takami
,
T.
, “
Optical Observation of the supercavitation induced by high-speed water entry
,”
J. Fluids Eng.
122
(
4
),
806
810
(
2000
).
25.
Shi
,
Y.
,
Wang
,
G. H.
, and
Pan
,
G.
, “
Experimental study on cavity dynamics of projectile water entry with different physical parameters
,”
Phys. Fluids
31
(
6
),
067103
(
2019
).
26.
Shokri
,
H.
and
Akbarzadeh
,
P.
, “
Experimental investigation of water entry of dimpled spheres
,”
Ocean Eng.
250
,
110992
(
2022
).
27.
Speirs
,
N. B.
,
Belden
,
J.
,
Pan
,
Z.
,
Holekamp
,
S.
,
Badlissi
,
G.
,
Jones
,
M.
, and
Truscott
,
T. T.
, “
The water entry of a sphere in a jet
,”
J. Fluid Mech.
863
,
956
968
(
2019
).
28.
Song
,
Z. J.
,
Duan
,
W. Y.
,
Xu
,
G. D.
, and
Zhao
,
B. B.
, “
Experimental and numerical study of the water entry of projectiles at high oblique entry speed
,”
Ocean Eng.
211
,
107574
(
2020
).
29.
Sui
,
Y. T.
,
Zhang
,
A. M.
,
Ming
,
F. R.
, and
Li
,
S.
, “
Experimental investigation of oblique water entry of high-speed truncated cone projectiles: Cavity dynamics and impact load
,”
J. Fluids Struct.
104
,
103305
(
2021
).
30.
Sun
,
T. Z.
,
Shi
,
C. B.
,
Zhang
,
G. Y.
,
Zhou
,
B.
, and
Wang
,
H.
, “
Cavity dynamics of vertical water entry of a truncated cone-cylinder body with different angles of attack
,”
Phys. Fluids
33
(
5
),
055129
(
2021
).
31.
Techet
,
A. H.
and
Truscott
,
T. T.
, “
Water entry of spinning hydrophobic and hydrophilic spheres
,”
J. Fluids Struct.
27
,
716
726
(
2011
).
32.
Treichler
,
D. M.
and
Kiger
,
K. T.
, “
Shallow water entry of supercavitating darts
,”
Exp. Fluids
61
(
2
),
31
(
2020
).
33.
Truscott
,
T. T.
and
Techet
,
A. H.
, “
Water entry of spinning spheres
,”
J. Fluid Mech.
625
,
135
165
(
2009
).
34.
Wang
,
Z. C.
,
Tao
,
T. T.
,
Zhu
,
Y. Q.
,
Hu
,
X. D.
,
Guo
,
Y. H.
,
Ji
,
J. W.
,
Liu
,
X. J.
,
Liu
,
K.
, and
Jiao
,
Y. L.
, “
Water entry dynamics of rough microstructured spheres
,”
Phys. Fluids
34
(
8
),
082106
(
2022
).
35.
Watson
,
D. A.
,
Bom
,
J. M.
,
Weinberg
,
M. P.
,
Souchik
,
C. J.
, and
Dickerson
,
A. K.
, “
Water entry dynamics of spheres with heterogeneous wetting properties
,”
Phys. Rev. Fluids
6
,
044003
(
2021
).
36.
Watson
,
D. A.
,
Stephen
,
J. L.
, and
Dickerson
,
A. K.
, “
Jet amplification and cavity formation induced by penetrable fabrics in hydrophilic sphere entry
,”
Phys. Fluids
30
(
8
),
082109
(
2018
).
37.
Worthington
,
A. M.
, and
Cole
,
R. S.
, “
Impact with a liquid surface studied by the aid of instantaneous photography
,”
Philos. Trans. R. Soc. A
194
,
175
200
(
1900
).
38.
Yang
,
L.
,
Wei
,
Y. J.
,
Li
,
J. C.
,
Wang
,
C.
, and
Xia
,
W. X.
, “
Experimental study on splash behaviors and cavity shape of elastic spheres during water entry
,”
Appl. Ocean Res.
113
,
102754
(
2021
).
39.
Yu
,
Y. L.
,
Shi
,
Y.
,
Pan
,
G.
,
Chen
,
X.
,
Zhao
,
H. R.
, and
Gao
,
S.
, “
Effect of asymmetric nose shape on the cavity and mechanics of projectile during high-speed water entry
,”
Ocean Eng.
266
,
112983
(
2022
).
40.
Yun
,
H. L.
,
Lyu
,
X. J.
, and
Wei
,
Z. Y.
, “
Experimental study on vertical water entry of two tandem spheres
,”
Ocean Eng.
201
,
107143
(
2020
).
41.
Zhou
,
B.
,
Liu
,
H.
,
Wang
,
Y. H.
,
Wu
,
Z. F.
,
Han
,
X. S.
, and
Gho
,
W. M.
, “
Numerical investigation on the cavity dynamics and multiphase flow field evolution for water entry of vertical cylindrical shell
,”
J. Fluids Struct.
103
,
103268
(
2021
).
You do not currently have access to this content.