The continuum approach employing porous media models is a robust and efficient solution method in the area of the simulation of fixed-bed reactors. This paper applies the double-averaging methodology to refine the continuum approach, opening a way to alleviate its main limitations: space-invariant averaging volume and inaccurate treatment of the porous/fluid interface. The averaging operator is recast as a general space–time filter allowing for the analysis of commutation errors in a classic large eddy simulation (LES) formalism. An explicit filtering framework has been implemented to carry out an a posteriori evaluation of the unclosed terms appearing in the double-averaged Navier–Stokes (DANS) equations, also considering a space-varying filter width. Two resolved simulations have been performed. First, the flow around a single, stationary particle has been used to validate derived equations and the filtering procedure. Second, an LES of the turbulent flow in a channel partly occupied with a porous medium has been realized and filtered. The commutation error at the porous–fluid interface has been evaluated and compared to the prediction of two models. The significance of the commutation error terms is also discussed and assessed. Finally, the solver for DANS equations has been developed and used to simulate both of the studied geometries. The magnitude of the error associated with neglecting the commutation errors has been investigated, and an LES simulation combined with a porous drag model was performed. Very encouraging results have been obtained indicating that the inaccuracy of the drag closure overshadows the error related to the commutation of operators.

1.
P.
Sagaut
,
Large Eddy Simulation for Incompressible Flows: An Introduction
, Scientific Computation,
3rd ed.
(
Springer
,
2006
).
2.
C.
Fureby
and
G.
Tabor
, “
Mathematical and physical constraints on large-eddy simulations
,”
Theor. Comput. Fluid Dyn.
9
,
85
102
(
1997
).
3.
O. V.
Vasilyev
and
D. E.
Goldstein
, “
Local spectrum of commutation error in large eddy simulations
,”
Phys. Fluids
16
,
470
(
2004
).
4.
N.
Jurtz
,
M.
Kraume
, and
G. D.
Wehinger
, “
Advances in fixed-bed reactor modeling using particle-resolved computational fluid dynamics (CFD)
,”
Rev. Chem. Eng.
35
,
139
190
(
2019
).
5.
A. G.
Dixon
and
B.
Partopour
, “
Computational fluid dynamics for fixed bed reactor design
,”
Annu. Rev. Chem. Biomol. Eng.
11
,
109
130
(
2020
).
6.
J.
Collazo
,
J.
Porteiro
,
D.
Patiño
, and
E.
Granada
, “
Numerical modeling of the combustion of densified wood under fixed-bed conditions
,”
Fuel
93
,
149
159
(
2012
).
7.
S.
Woudberg
and
É.
Dumont
, “
Porous media models for packed bed characterization
,” in
From Biofiltration to Promising Options in Gaseous Fluxes Biotreatment
, edited by
G.
Soreanu
and
É.
Dumont
(
Elsevier
,
2020
), Chap. 4, pp.
71
87
.
8.
E.
Illana Mahiques
,
M.
Brömmer
,
S.
Wirtz
, and
V.
Scherer
, “
Locally resolved simulation of gas mixing and combustion inside static and moving particle assemblies
,”
Chem. Eng. Technol.
(published online 2023).
9.
A.
Shams
,
F.
Roelofs
,
E.
Komen
, and
E.
Baglietto
, “
Optimization of a pebble bed configuration for quasi-direct numerical simulation
,”
Nucl. Eng. Des.
242
,
331
340
(
2012
).
10.
A.
Shams
,
F.
Roelofs
,
E.
Komen
, and
E.
Baglietto
, “
Numerical simulations of a pebble bed configuration using hybrid (RANS–LES) methods
,”
Nucl. Eng. Des.
261
,
201
211
(
2013
).
11.
A.
Shams
,
F.
Roelofs
,
E.
Komen
, and
E.
Baglietto
, “
Quasi-direct numerical simulation of a pebble bed configuration—Part I: Flow (velocity) field analysis
,”
Nucl. Eng. Des.
263
,
473
489
(
2013
).
12.
A.
Shams
,
F.
Roelofs
,
E.
Komen
, and
E.
Baglietto
, “
Large eddy simulation of a nuclear pebble bed configuration
,”
Nucl. Eng. Des.
261
,
10
19
(
2013
).
13.
A.
Shams
,
F.
Roelofs
,
E. M. J.
Komen
, and
E.
Baglietto
, “
Quasi-direct numerical simulation of a pebble bed configuration, Part-II: Temperature field analysis
,”
Nucl. Eng. Des.
263
,
490
499
(
2013
).
14.
A.
Shams
,
F.
Roelofs
,
E.
Komen
, and
E.
Baglietto
, “
Large eddy simulation of a randomly stacked nuclear pebble bed
,”
Comput. Fluids
96
,
302
321
(
2014
).
15.
A.
Shams
,
F.
Roelofs
,
E.
Komen
, and
E.
Baglietto
, “
Improved delayed detached eddy simulation of a randomly stacked nuclear pebble bed
,”
Comput. Fluids
122
,
12
25
(
2015
).
16.
J.
Wiese
,
F.
Wissing
,
D.
Höhner
,
S.
Wirtz
,
V.
Scherer
,
U.
Ley
, and
H. M.
Behr
, “
DEM/CFD modeling of the fuel conversion in a pellet stove
,”
Fuel Process. Technol.
152
,
223
239
(
2016
).
17.
S.
Whitaker
, “
The Forchheimer equation: A theoretical development
,”
Transp. Porous Media
25
,
27
61
(
1996
).
18.
S.
Ergun
, “
Fluid flow through packed columns
,”
Chem. Eng. Prog.
48
,
89
94
(
1952
).
19.
J.
Ochoa-Tapia
and
S.
Whitaker
, “
Momentum transfer at the boundary between a porous medium and a homogeneous fluid—I: Theoretical development
,”
Int. J. Heat Mass Transfer
38
,
2635
(
1995
).
20.
J.
Porteiro
,
J.
Collazo
,
D.
Patiño
,
E.
Granada
,
J. C.
Moran Gonzalez
, and
J. L.
Míguez
, “
Numerical modeling of a biomass pellet domestic boiler
,”
Energy Fuels
23
,
1067
1075
(
2009
).
21.
J.
Rajika
and
M.
Narayana
, “
Modelling and simulation of wood chip combustion in a hot air generator system
,”
SpringerPlus
5
,
1166
(
2016
).
22.
N.
Fernando
and
M.
Narayana
, “
A comprehensive two dimensional computational fluid dynamics model for an updraft biomass gasifier
,”
Renewable Energy
99
,
698
710
(
2016
).
23.
S.
Whitaker
,
The Method of Volume Averaging
, Theory and Applications of Transport in Porous Media Vol.
13
, edited by
J.
Bear
(
Springer Netherlands
,
Dordrecht
,
1999
).
24.
S.
Whitaker
, “
Flow in porous media I: A theoretical derivation of Darcy's law
,”
Transp. Porous Media
1
,
3
25
(
1986
).
25.
S.
Whitaker
, “
Flow in porous media II: The governing equations for immiscible, two-phase flow
,”
Transp. Porous Media
1
,
105
125
(
1986
).
26.
B.
Goyeau
,
D.
Lhuillier
,
D.
Gobin
, and
M.
Velarde
, “
Momentum transport at a fluid–porous interface
,”
Int. J. Heat Mass Transfer
46
,
4071
4081
(
2003
).
27.
J.
Lage
,
M. J.
de Lemos
, and
D.
Nield
, “
Modeling turbulence in porous media
,” in
Transport Phenomena in Porous Media II
, edited by
D. B.
Ingham
and
I.
Pop
(
Pergamon
,
Oxford
,
2002
), Chap. 8, pp.
198
230
.
28.
V.
Nikora
,
I.
McEwan
,
S.
McLean
,
S.
Coleman
,
D.
Pokrajac
, and
R.
Walters
, “
Double-averaging concept for rough-bed open-channel and overland flows: Theoretical background
,”
J. Hydraul. Eng.
133
,
873
883
(
2007
).
29.
V.
Nikora
,
F.
Ballio
,
S.
Coleman
, and
D.
Pokrajac
, “
Spatially averaged flows over mobile rough beds: Definitions, averaging theorems, and conservation equations
,”
J. Hydraul. Eng.
139
,
803
811
(
2013
).
30.
K.
Papadopoulos
,
V.
Nikora
,
S.
Cameron
,
M.
Stewart
, and
C.
Gibbins
, “
Spatially-averaged flows over mobile rough beds: Equations for the second-order velocity moments
,”
J. Hydraul. Res.
58
,
133
151
(
2020
).
31.
W. G.
Gray
, “
A derivation of the equations for multi-phase transport
,”
Chem. Eng. Sci.
30
,
229
233
(
1975
).
32.
B.
Vowinckel
,
V.
Nikora
,
T.
Kempe
, and
J.
Fröhlich
, “
Momentum balance in flows over mobile granular beds: Application of double-averaging methodology to DNS data
,”
J. Hydraul. Res.
55
,
190
207
(
2017
).
33.
D. C.
Wilcox
,
Turbulence Modelling for CFD
(
DCW Industries
,
La Cañada
,
1993
).
34.
W. G.
Gray
, “
Local volume averaging of multiphase systems using a non-constant averaging volume
,”
Int. J. Multiphase Flow
9
,
755
761
(
1983
).
35.
K.
Papadopoulos
,
V.
Nikora
,
B.
Vowinckel
,
S.
Cameron
,
R.
Jain
,
M.
Stewart
,
C.
Gibbins
, and
J.
Fröhlich
, “
Double-averaged kinetic energy budgets in flows over mobile granular beds: Insights from DNS data analysis
,”
J. Hydraul. Res.
58
,
653
672
(
2020
).
36.
M.
Iovieno
and
D.
Tordella
, “
Variable scale filtered Navier–Stokes equations: A new procedure to deal with the associated commutation error
,”
Phys. Fluids
15
,
1926
1936
(
2003
).
37.
M.
Klein
and
M.
Germano
, “
Analysis and modelling of the commutation error
,”
Fluids
6
,
15
(
2020
).
38.
A.
Faghri
and
Y.
Zhang
,
Fundamentals of Multiphase Heat Transfer and Flow
(
Springer International Publishing
,
Cham
,
2020
).
39.
W. P.
Breugem
,
B. J.
Boersma
, and
R. E.
Uittenbogaard
, “
The influence of wall permeability on turbulent channel flow
,”
J. Fluid Mech.
562
,
35
(
2006
).
40.
W.
Sadowski
and
F.
di Mare
, “
Investigation of the porous drag and permeability at the porous-fluid interface: Influence of the filtering parameters on Darcy closure
,”
Particuology
78
,
122
135
(
2023
).
41.
M.
Quintard
and
S.
Whitaker
, “
Transport in ordered and disordered porous media—II: Generalized volume averaging
,”
Transp. Porous Media
14
,
179
206
(
1994
).
42.
W.-P.
Breugem
, “
The influence of wall permeability on laminar and turbulent flows, theory and simulations
,” Ph.D. thesis (
TU Delft
,
Delft
,
2005
).
43.
J.
Bardino
,
J. H.
Ferziger
, and
W. C.
Reynolds
, “
Improved turbulence models based on large eddy simulation of homogeneous, incompressible turbulent flows
,” Stanford University Report No. TF-19 (
Stanford University
,
1983
).
44.
S.
Irmay
, “
Modèles théoriques d'écoulement dans les corps poreux
,”
Bull. Rilem
29
,
37
45
(
1965
).
45.
W. P.
Breugem
,
B. J.
Boersma
, and
R. E.
Uittenbogaard
, “
Direct numerical simulations of plane channel flow over a 3D Cartesian grid of cubes
,” in
Proceedings of ICAPM 2004
(
2004
).
46.
Y.
Jin
,
M.-F.
Uth
,
A. V.
Kuznetsov
, and
H.
Herwig
, “
Numerical investigation of the possibility of macroscopic turbulence in porous media: A direct numerical simulation study
,”
J. Fluid Mech.
766
,
76
103
(
2015
).
47.
F.
Moukalled
,
L.
Mangani
, and
M.
Darwish
,
The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM and Matlab
, Fluid Mechanics and Its Applications Vol.
113
(
Springer International Publishing
,
Cham
,
2016
).
48.
H.
Weller
,
G.
Tabor
,
H.
Jasak
, and
C.
Fureby
, “
A tensorial approach to computational continuum mechanics using object orientated techniques
,”
Comput. Phys.
12
,
620
631
(
1998
).
49.
H.
Jasak
, “
Error analysis and estimation for the finite volume method with applications to fluid flows
,” Ph.D. thesis (
Imperial College London
,
1996
).
50.
S. V.
Patankar
and
D. B.
Spalding
, “
A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows
,”
Int. J. Heat Mass Transfer
15
,
1787
1806
(
1972
).
51.
F.
Nicoud
and
F.
Ducros
, “
Subgrid-scale stress modelling based on the square of the velocity gradient tensor
,”
Flow, Turbul. Combust.
62
,
183
200
(
1999
).
52.
F.
di Mare
,
R.
Knappstein
, and
M.
Baumann
, “
Application of les-quality criteria to internal combustion engine flows
,”
Comput. Fluids
89
,
200
213
(
2014
).
53.
I. B.
Celik
,
Z. N.
Cehreli
, and
I.
Yavuz
, “
Index of resolution quality for large eddy simulations
,”
J. Fluids Eng.
127
,
949
958
(
2005
).
54.
D. R.
Chapman
, “
Computational aerodynamics development and outlook
,”
AIAA J.
17
,
1293
1313
(
1979
).
55.
Y.
Kuwata
and
K.
Suga
, “
Lattice Boltzmann direct numerical simulation of interface turbulence over porous and rough walls
,”
Int. J. Heat Fluid Flow
61
,
145
157
(
2016
).
56.
R. A.
Silva
and
M. J.
de Lemos
, “
Turbulent flow in a channel occupied by a porous layer considering the stress jump at the interface
,”
Int. J. Heat Mass Transfer
46
,
5113
5121
(
2003
).
57.
S.
Whitaker
, “
A simple geometrical derivation of the spatial averaging theorem
,”
Chem. Eng. Educ.
19.1
,
18
52
(
1985
).
58.
F. A.
Howes
and
S.
Whitaker
, “
The spatial averaging theorem revisited
,”
Chem. Eng. Sci.
40
,
1387
1392
(
1985
).
59.
W.
Gray
and
P.
Lee
, “
On the theorems for local volume averaging of multiphase systems
,”
Int. J. Multiphase Flow
3
,
333
340
(
1977
).
60.
I. P.
Kinnmark
and
W. G.
Gray
, “
An exposition of the distribution function used in proving the averaging theorems for multiphase flow
,”
Adv. Water Resour.
7
,
113
115
(
1984
).
61.
L.
Wang
,
L.-P.
Wang
,
Z.
Guo
, and
J.
Mi
, “
Volume-averaged macroscopic equation for fluid flow in moving porous media
,”
Int. J. Heat Mass Transfer
82
,
357
368
(
2015
).
You do not currently have access to this content.