The presence of structures in the ocean complicates the navigation of an underwater axisymmetric body. This effect involves special environmental fluid dynamics, such as unsteadiness, strong nonlinearity, cavity multiphase flow, strong turbulence, and so forth. In this paper, an improved delayed detached eddy simulation method is used to investigate the ventilated cavity flow of an axisymmetric body in the ocean, with the intent of exploring differences in cavity multiphase flow characteristics in the presence and absence of a structure. The presence of the structure advances the deflation of the tail, shortening the length of the main body of the ventilated cavity by 21.1%. In addition, the interference of the structure increases the shedding of multi-scale vortices, while the cavity body and the shedding vortices appear asymmetrical. Moreover, the existence of the structure increases the violence of the pressure fluctuation of the axisymmetric body, where the pressure fluctuation directly below the structure reaches 57.6%, and the fluctuation of the distribution probability of the cavitation number also increases. It is worth noting that the existence of the structure does not change the main frequency of the ventilated cavity shedding in front of the structure.

1.
C.
Xu
,
J.
Huang
,
Y.
Wang
,
X.
Wu
,
C.
Huang
, and
X.
Wu
, “
Supercavitating flow around high-speed underwater projectile near free surface induced by air entrainment
,”
AIP Adv.
8
(
3
),
035016
(
2018
).
2.
O.
Faltinsen
, “
Hydrodynamics of high speed marine vehicles
,” in
Proceedings of the Hydrodynamics VI: Theory and Applications: The 6th International Conference on Hydrodynamics
,
Perth, Western Australia
, 24–26 November 2004 (
CRC Press
,
2004
), p.
3
.
3.
T.
Sun
,
Y.
Ding
,
H.
Huang
,
B.
Xie
, and
G.
Zhang
, “
Numerical study on the effects of modulated ventilation on unsteady cavity dynamics and noise patterns
,”
Phys. Fluids
33
(
12
),
123307
(
2021
).
4.
Y.
Liu
,
B.
Huang
,
H.
Zhang
,
Q.
Wu
, and
G.
Wang
, “
Experimental investigation into fluid–structure interaction of cavitating flow
,”
Phys. Fluids
33
(
9
),
093307
(
2021
).
5.
R. A.
Furness
and
S. P.
Hutton
, “
Experimental and theoretical studies of two-dimensional fixed-type cavities
,”
J. Fluids Eng.
97
(
4
),
515
521
(
1975
).
6.
S.
Shao
,
Y.
Wu
,
J.
Haynes
,
R. E.
Arndt
, and
J.
Hong
, “
Investigation into the behaviors of ventilated supercavities in unsteady flow
,”
Phys. Fluids
30
(
5
),
052102
(
2018
).
7.
T.
Sun
,
Z.
Wang
,
L.
Zou
, and
H.
Wang
, “
Numerical investigation of positive effects of ventilated cavitation around a NACA 66 hydrofoil
,”
Ocean Eng.
197
,
106831
(
2020
).
8.
T.
Sun
,
J.
Zhang
,
X.
Zhang
, and
Y.
Jiang
, “
Study on the influence of temperature on the temporal and spatial distribution characteristics of natural cavitating flow around a vehicle
,”
J. Mar. Sci. Eng.
9
(
1
),
24
(
2020
).
9.
T.
Sun
,
X.
Zhang
,
J.
Zhang
, and
C.
Wang
, “
Experimental study on the unsteady natural cloud cavities: Influence of cavitation number on cavity evolution and pressure pulsations
,”
J. Mar. Sci. Eng.
9
(
5
),
487
(
2021
).
10.
Y.
Jiang
,
S. W.
Jeong
,
B. K.
Ahn
,
H. T.
Kim
, and
Y. R.
Jung
, “
Experimental investigation of drag characteristics of ventilated supercavitating vehicles with different body shapes
,”
Phys. Fluids
31
(
5
),
052106
(
2019
).
11.
S. L.
Ceccio
, “
Friction drag reduction of external flows with bubble and gas injection
,”
Annu. Rev. Fluid Mech.
42
,
183
203
(
2010
).
12.
W.
Zou
,
T.
Liu
,
Y.
Shi
, and
J.
Wang
, “
Analysis of motion characteristics of a controllable ventilated supercavitating vehicle under accelerations
,”
J. Fluids Eng.
143
(
11
),
111204
(
2021
).
13.
A.
Karn
,
R. E.
Arndt
, and
J.
Hong
, “
An experimental investigation into supercavity closure mechanisms
,”
J. Fluid Mech.
789
,
259
284
(
2016
).
14.
T.
Sun
,
X.
Zhang
,
C.
Xu
,
G.
Zhang
,
C.
Wang
, and
Z.
Zong
, “
Experimental investigation on the cavity evolution and dynamics with special emphasis on the development stage of ventilated partial cavitating flow
,”
Ocean Eng.
187
,
106140
(
2019
).
15.
T.
Sun
,
X.
Zhang
,
C.
Xu
,
G.
Zhang
,
S.
Jiang
, and
Z.
Zong
, “
Numerical modeling and simulation of the shedding mechanism and vortex structures at the development stage of ventilated partial cavitating flows
,”
Eur. J. Mech.-B/Fluids
76
,
223
232
(
2019
).
16.
T.
Sun
,
Y.
Ding
,
Y.
Liu
, and
L.
Zou
, “
Numerical modeling and investigation of the effect of internal waves on the dynamic behavior of an asymmetric ventilated supercavity
,”
Ocean Eng.
233
,
109193
(
2021
).
17.
A. G.
Khan
,
Q.
Hisette
,
H.
Streckwall
, and
P.
Liu
, “
Numerical investigation of propeller-ice interaction effects
,”
Ocean Eng.
216
,
107716
(
2020
).
18.
P.
Xu
,
C.
Wang
,
L.
Ye
,
C.
Guo
,
W.
Xiong
, and
S.
Wu
, “
Cavitation and induced excitation force of ice-class propeller blocked by ice
,”
J. Mar. Sci. Eng.
9
(
6
),
674
(
2021
).
19.
J.
Hellmann
,
K.
Rupp
, and
W.
Kuehnlein
, “
Model tests: LNG-carriers in ice
,” in
Proceedings of the 25th International Conference on Offshore Mechanics and Arctic Engineering
(
ASME
,
2006
), Vol.
2
, pp.
783
789
.
20.
A. V.
Pogorelova
,
V. M.
Kozin
, and
V. L.
Zemlyak
, “
Motion of a slender body in a fluid under a floating plate
,”
J. Appl. Mech. Tech. Phys.
53
(
1
),
27
37
(
2012
).
21.
A. V.
Pogorelova
,
V. L.
Zemlyak
, and
V. M.
Kozin
, “
Moving of a submarine under an ice cover in fluid of finite depth
,”
J. Hydrodyn.
31
,
562
569
(
2019
).
22.
V. L.
Zemlyak
,
A. V.
Pogorelova
, and
V. M.
Kozin
, “
Influence of peculiarities of the form of a submarine vessel on the efficiency of breaking ice cover
,”
paper presented at the Twenty-Third International Offshore and Polar Engineering Conference
,
Anchorage, Alaska
, June
2013
.
23.
V. L.
Zemlyak
,
V. M.
Kozin
,
N. O.
Baurin
,
K. I.
Ipatov
, and
M. V.
Kandelya
, “
The study of the impact of ice conditions on the possibility of the submarine vessels surfacing in the ice cove
,”
J. Phys.: Conf. Ser.
919
(
1
),
012004
(
2017
).
24.
V. L.
Zemlyak
,
V. M.
Kozin
, and
N. O.
Baurin
, “
Influence of peculiarities of the form of a submerged body on the parameters of generated waves in the ice motion
,”
IOP Conf. Ser.: Earth Environ. Sci.
193
(
1
),
012024
(
2018
).
25.
J.
Blake
,
P.
Robinson
,
A.
Shima
, and
Y.
Tomita
, “
Interaction of two cavitation bubbles with a rigid boundary
,”
J. Fluid Mech.
255
,
707
721
(
1993
).
26.
P. C.
Chan
,
K. K.
Kan
, and
J. H.
Stuhmiller
, “
A computational study of bubble-structure interaction
,”
J. Fluids Eng.
122
(
4
),
783
790
(
2000
).
27.
P.
Cui
,
A.
Zhang
,
S.
Wang
, and
Y.
Liu
, “
Experimental study on interaction, shock wave emission and ice breaking of two collapsing bubbles
,”
J. Fluid Mech.
897
,
A25
(
2020
).
28.
C. A.
Brebbia
and
L. C.
Wrobel
, “
Boundary element method for fluid flow
,”
Adv. Water Resour.
2
,
83
89
(
1979
).
29.
G. V.
Logvinovich
,
Hydrodynamics of Flows with Free Boundaries
, (
IPST
,
Kyiv
,
1969
).
30.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
(
1
),
201
225
(
1981
).
31.
C. W.
Hirt
,
A. A.
Amsden
, and
J. L.
Cook
, “
An arbitrary Lagrangian-Eulerian computing method for all flow speeds
,”
J. Comput. Phys.
14
(
3
),
227
253
(
1974
).
32.
M.
Passandideh-Fard
and
E.
Roohi
, “
Transient simulations of cavitating flows using a modified volume-of-fluid (VOF) technique
,”
Int. J. Comput. Fluid Dyn.
22
(
1–2
),
97
114
(
2008
).
33.
M. A.
Fronzeo
,
M.
Kinzel
, and
J.
Lindau
, “
Artificially ventilated cavities: Evaluating the constant-pressure approximation
,” in
Proceedings of the Fluids Engineering Division Summer Meeting
(
ASME
,
2017
), Vol.
58059
, p.
V01BT11A022
.
34.
N.
Gui
,
L.
Ge
,
P.
Cheng
,
X.
Yang
,
J.
Tu
, and
S.
Jiang
, “
Comparative assessment and analysis of rorticity by Rortex in swirling jets
,”
J. Hydrodyn.
31
(
5
),
495
(
2019
).
35.
T.
Dong
,
G.
Minelli
,
J.
Wang
,
X.
Liang
, and
S.
Krajnović
, “
Numerical investigation of a high-speed train underbody flows: Studying flow structures through large-eddy simulation and assessment of steady and unsteady Reynolds-averaged Navier–Stokes and improved delayed detached eddy simulation performance
,”
Phys. Fluids
34
(
1
),
015126
(
2022
).
36.
C.
Mockett
,
A Comprehensive Study of Detached Eddy Simulation
(
Univerlagtuberlin
,
2009
).
37.
A.
Lungu
, “
Large flow separations around a generic submarine in static drift motion resolved by various turbulence closure models
,”
J. Mar. Sci. Eng.
10
(
2
),
198
(
2022
).
38.
X.
Zhang
,
C.
Wang
,
Y.
Wei
, and
T.
Sun
, “
Experimental investigation of unsteady characteristics of ventilated cavitation flow around an under-water vehicle
,”
Adv. Mech. Eng.
8
(
11
),
1
9
(
2016
).
39.
J.
Zhou
,
K.
Yu
,
J.
Min
, and
Y.
Ming
, “
The comparative study of ventilated super cavity shape in water tunnel and infinite flow field
,”
J. Hydrodyn., Ser. B
22
(
5
),
689
696
(
2010
).
40.
L.
Cao
,
A.
Karn
,
R.
Arndt
,
Z.
Wang
, and
J.
Hong
, “
Numerical investigations of pressure distribution inside a ventilated supercavity
,”
J. Fluids Eng.
139
(
2
),
021301
(
2017
).
41.
Y.
Choe
and
C.
Kim
, “
Computational investigation on ventilated supercavitating flows and its hydrodynamic characteristics around a high-speed underwater vehicle
,”
Ocean Eng.
249
,
110865
(
2022
).
42.
S.
Gaggero
,
D.
Villa
, and
S.
Brizzolara
, “
RANS and PANEL method for unsteady flow propeller analysis
,”
J. Hydrodyn., Ser. B
22
(
5
),
547
569
(
2010
).
43.
Y.
Zhang
,
K.
Chen
, and
D.
Jiang
, “
CFD analysis of the lateral loads of a propeller in oblique flow
,”
Ocean Eng.
202
,
107153
(
2020
).
44.
J.
Gong
,
Z.
Wu
,
J.
Ding
,
J.
Jiang
, and
Z.
Zhang
, “
Numerical analysis of propulsion performance of a waterjet-propelled vehicle in steady drift
,”
Ocean Eng.
266
,
113136
(
2022
).
45.
C.
Liu
,
Y.
Wang
,
Y.
Yang
, and
Z.
Duan
, “
New Omega vortex identification method
,”
Sci. China: Phys., Mech. Astron.
59
(
8
),
1
9
(
2016
).
46.
X.
Dong
,
Y.
Wang
,
X.
Chen
,
Y.
Dong
,
Y.
Zhang
, and
C.
Liu
, “
Determination of epsilon for Omega vortex identification method
,”
J. Hydrodyn.
30
(
4
),
541
548
(
2018
).
47.
C.
Liu
,
Y.
Gao
,
S.
Tian
, and
X.
Dong
, “
Rortex—A new vortex vector definition and vorticity tensor and vector decompositions
,”
Phys. Fluids
30
(
3
),
035103
(
2018
).
48.
A.
May
, “
Water entry and the cavity-running behavior of missiles
,” Navsea Hydroballistics Advisory Committee Silver Spring MD Report No. ADA020429,
1975
.
You do not currently have access to this content.