Toward data-driven wall-modeled large-eddy simulations of different wall-bounded turbulent flows, a wall model is learned in this work using the wall-resolved large-eddy simulation (WRLES) data of the flow over periodic hills (PH) and the law of the wall (LoW). The feedforward neural network (FNN) is employed to construct the model. The obtained FNN_PH-LoW model is successfully tested using the direct numerical simulation data of turbulent channel flows and the WRLES data of PH cases, and applied to turbulent channel flows for a wide range of Reynolds numbers.
REFERENCES
1.
S. T.
Bose
and
G. I.
Park
, “
Wall-modeled large-eddy simulation for complex turbulent flows
,” Annu. Rev. Fluid Mech.
50
, 535
–561
(2018
).2.
K. A.
Goc
,
P.
Moin
, and
S. T.
Bose
, “
Wall-modeled large eddy simulation of an aircraft in landing configuration
,” AIAA Paper No. 2020-3002, 2020
.3.
X. L.
Yang
,
C.
Milliren
,
M.
Kistner
,
C.
Hogg
,
J.
Marr
,
L.
Shen
, and
F.
Sotiropoulos
, “
High-fidelity simulations and field measurements for characterizing wind fields in a utility-scale wind farm
,” Appl. Energy
281
, 116115
(2021
).4.
X. I. A.
Yang
and
K. P.
Griffin
, “
Grid-point and time-step requirements for direct numerical simulation and large-eddy simulation
,” Phys. Fluids
33
, 015108
(2021
).5.
Z. D.
Zhou
,
Z. B.
Li
,
G. W.
He
, and
X. L.
Yang
, “
Towards multi-fidelity simulation of flows around an underwater vehicle with appendages and propeller
,” Theor. Appl. Mech. Lett.
12
, 100318
(2022
).6.
K.
Duraisamy
,
G.
Iaccarino
, and
H.
Xiao
, “
Turbulence modeling in the age of data
,” Annu. Rev. Fluid Mech.
51
, 357
–377
(2019
).7.
S. L.
Brunton
,
B. R.
Noack
, and
P.
Koumoutsakos
, “
Machine learning for fluid mechanics
,” Annu. Rev. Fluid Mech.
52
, 477
–508
(2020
).8.
J.-L.
Wu
,
H.
Xiao
, and
E.
Paterson
, “
Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework
,” Phys. Rev. Fluids
3
, 074602
(2018
).9.
R.
Maulik
,
O.
San
,
A.
Rasheed
, and
P.
Vedula
, “
Data-driven deconvolution for large eddy simulations of Kraichnan turbulence
,” Phys. Fluids
30
, 125109
(2018
).10.
Z. D.
Zhou
,
G. W.
He
,
S. Z.
Wang
, and
G. D.
Jin
, “
Subgrid-scale model for large-eddy simulation of isotropic turbulent flows using an artificial neural network
,” Comput. Fluids
195
, 104319
(2019
).11.
C. Y.
Xie
,
J. C.
Wang
, and
E.
Weinan
, “
Modeling subgrid-scale forces by spatial artificial neural networks in large eddy simulation of turbulence
,” Phys. Rev. Fluids
5
, 054606
(2020
).12.
X. W.
Guo
,
Z. H.
Xia
, and
S. Y.
Chen
, “
Practical framework for data-driven RANS modeling with data augmentation
,” Acta Mech. Sin.
37
(12
), 1748
–1756
(2021
).13.
X.-L.
Zhang
,
H.
Xiao
,
X. D.
Luo
, and
G. W.
He
, “
Ensemble Kalman method for learning turbulence models from indirect observation data
,” J. Fluid Mech.
949
, A26
(2022
).14.
Z.
Zhang
,
J. Z.
Wang
,
R. F.
Huang
,
R. D.
Qiu
,
X. S.
Chu
,
S. R.
Ye
,
Y. W.
Wang
, and
Q. K.
Liu
, “
Data-driven turbulence model for unsteady cavitating flow
,” Phys. Fluids
35
, 015134
(2023
).15.
R.
King
,
O.
Hennigh
,
A.
Mohan
, and
M.
Chertkov
, “
From deep to physics-informed learning of turbulence: Diagnostics
,” arXiv:1810.07785v2 (2018
).16.
S.
Lee
and
D.
You
, “
Data-driven prediction of unsteady flow over a circular cylinder using deep learning
,” J. Fluid Mech.
879
, 217
–254
(2019
).17.
T.
Nakamura
,
K.
Fukami
,
K.
Hasegawa
,
Y.
Nabae
, and
K.
Fukagata
, “
Convolutional neural network and long short-term memory based reduced order surrogate for minimal turbulent channel flow
,” Phys. Fluids
33
, 025116
(2021
).18.
X. Y.
Qu
,
Z. J.
Liu
,
W.
An
,
X. J.
Liu
, and
H. Q.
Lyu
, “
Dynamics-disentangled deep learning model for multi-cycle prediction of unsteady flow field
,” Phys. Fluids
34
, 095128
(2022
).19.
B.
Liu
,
J. P.
Tang
,
H. B.
Huang
, and
X. Y.
Lu
, “
Deep learning methods for super-resolution reconstruction of turbulent flows
,” Phys. Fluids
32
, 025105
(2020
).20.
F.
Fukami
,
K.
Fukagata
, and
K.
Taira
, “
Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows
,” J. Fluid Mech.
909
, A9
(2021
).21.
H. P.
Wang
,
Y.
Liu
, and
S. Z.
Wang
, “
Dense velocity reconstruction from particle image velocimetry/particle tracking velocimetry using a physics-informed neural network
,” Phys. Fluids
34
, 017116
(2022
).22.
Z. D.
Zhou
,
B. L.
Li
,
X. L.
Yang
, and
Z. X.
Yang
, “
A robust super-resolution reconstruction model of turbulent flow data based on deep learning
,” Comput. Fluids
239
, 105382
(2022
).23.
S. J.
Laima
,
X. X.
Zhou
,
X. W.
Jin
,
D. L.
Gao
, and
H.
Li
, “
DeepTRNet: Time-resolved reconstruction of flow around a circular cylinder via spatiotemporal deep neural networks
,” Phys. Fluids
35
, 015118
(2023
).24.
R.
Arun
,
H. J.
Bae
, and
B. J.
McKeon
, “
Towards real-time reconstruction of velocity fluctuations in turbulent channel flow
,” arXiv:2301.06734v1 (2023
).25.
Z.
Wu
,
J.
Lee
,
C.
Meneveau
, and
T.
Zaki
, “
Application of a self-organizing map to identify the turbulent-boundary-layer interface in a transitional flow
,” Phys. Rev. Fluids
4
, 023902
(2019
).26.
B. L.
Li
,
Z. X.
Yang
,
X.
Zhang
,
G. W.
He
,
B.-Q.
Deng
, and
L.
Shen
, “
Using machine learning to detect the turbulent region in flow past a circular cylinder
,” J. Fluid Mech.
905
, A10
(2020
).27.
K.
Fukami
,
T.
Murata
,
K.
Zhang
, and
K.
Fukagata
, “
Sparse identification of nonlinear dynamics with low-dimensionalized flow representations
,” J. Fluid Mech.
926
, A10
(2021
).28.
J.
Park
and
H.
Choi
, “
Machine-learning-based feedback control for drag reduction in a turbulent channel flow
,” J. Fluid Mech.
904
, A24
(2020
).29.
Y.
Zhou
,
D. W.
Fan
,
B. F.
Zhang
,
R. Y.
Li
, and
B. R.
Noack
, “
Artificial intelligence control of a turbulent jet
,” J. Fluid Mech.
897
, A27
(2020
).30.
F.
Ren
,
J.
Rabault
, and
H.
Tang
, “
Applying deep reinforcement learning to active flow control in weakly turbulent conditions
,” Phys. Fluids
33
, 037121
(2021
).31.
Z. D.
Zhou
,
G. W.
He
, and
X. L.
Yang
, “
Wall model based on neural networks for LES of turbulent flows over periodic hills
,” Phys. Rev. Fluids
6
, 054610
(2021
).32.
M.
Milano
and
P.
Koumoutsakos
, “
Neural network modeling for near wall turbulent flow
,” J. Comput. Phys.
182
, 1
–26
(2002
).33.
X. I. A.
Yang
,
S.
Zafar
,
J.-X.
Wang
, and
H.
Xiao
, “
Predictive large-eddy-simulation wall modeling via physics-informed neural networks
,” Phys. Rev. Fluids
4
, 034602
(2019
).34.
X. L. D.
Huang
,
X. I. A.
Yang
, and
R. F.
Kunz
, “
Wall-modeled large-eddy simulations of spanwise rotating turbulent channels-Comparing a physics-based approach and a data-based approach
,” Phys. Fluids
31
, 125105
(2019
).35.
H. J.
Bae
and
P.
Koumoutsakos
, “
Scientific multi-agent reinforcement learning for wall-models of turbulent flows
,” Nat. Commun.
13
, 1443
(2022
).36.
D.
Zhou
,
M. P.
Whitmore
,
K. P.
Griffin
, and
H. J.
Bae
, “
Multi-agent reinforcement learning for wall modeling in LES of flow over periodic hills
,” arXiv:2211.16427v1 (2022
).37.
A.
Lozano-Durán
and
H. J.
Bae
, “
Self-critical machine-learning wall-modeled LES for external aerodynamics
,” arXiv:2012.10005v1 (2020
).38.
A.
Lozano-Durán
and
H. J.
Bae
, “
Building-block-flow wall model for large-eddy simulation
,” arXiv:2211.07879v1 (2022
).39.
Y. W.
Bin
,
L. H.
Chen
,
G.
Huang
, and
X. I. A.
Yang
, “
Progressive, extrapolative machine learning for near-wall turbulence modeling
,” Phys. Rev. Fluids
7
, 084610
(2022
).40.
Z. D.
Zhou
,
T.
Wu
, and
X. L.
Yang
, “
Reynolds number effect on statistics of turbulent flows over periodic hills
,” Phys. Fluids
33
, 105124
(2021
).41.
X. L.
Yang
,
F.
Sotiropoulos
,
R. J.
Conzemius
,
J. N.
Wachtler
, and
M. B.
Strong
, “
Large-eddy simulation of turbulent flow past wind turbines/farms: The virtual wind simulator (VWiS)
,” Wind Energy
18
(12
), 2025
–2045
(2015
).42.
M.
Germano
,
U.
Piomelli
,
P.
Moin
, and
W. H.
Cabot
, “
A dynamic subgrid-scale eddy viscosity model
,” Phys. Fluids A
3
, 1760
(1991
).43.
H.
Xiao
,
J.-L.
Wu
,
S.
Laizet
, and
L.
Duan
, “
Flows over periodic hills of parameterized geometries: A dataset for data-driven turbulence modeling from direct simulations
,” Comput. Fluids
200
, 104431
(2020
).44.
C.
Duprat
,
G.
Balarac
,
O.
Métais
,
P. M.
Congedo
, and
O.
Brugière
, “
A wall-layer model for large-eddy simulations of turbulent flows with/out pressure gradient
,” Phys. Fluids
23
, 015101
(2011
).45.
I.
Goodfellow
,
Y.
Bengio
, and
A.
Courville
, Deep Learning
(
MIT Press
,
Cambridge, MA
, 2016
).46.
D. E.
Rumelhart
,
G. E.
Hinton
, and
R. J.
Williams
, “
Learning representations by back-propagating errors
,” Nature
323
, 533
–536
(1986
).47.
M.
Abadi
,
P.
Barham
,
J.
Chen
,
Z.
Chen
,
A.
Davis
,
J.
Dean
,
M.
Devin
,
S.
Ghemawat
,
G.
Irving
,
M.
Isard
et al, “
TensorFlow: A system for large-scale machine learning
,” in Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation
(USENIX Association, 2016
), Vol.
16
, pp. 265
–283
.48.
See http://turbulence.pha.jhu.edu for J. Hopkins turbulence databases.
49.
X. I. A.
Yang
,
G. I.
Park
, and
P.
Moin
, “
Log-layer mismatch and modeling of the fluctuating wall stress in wall-modeled large-eddy simulations
,” Phys. Rev. Fluids
2
, 104601
(2017
).50.
M.
Lee
and
R. D.
Moser
, “
Direct numerical simulation of turbulent channel flow up to
,” J. Fluid Mech.
774
, 395
–415
(2015
).© 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.