A recent experiment showed that, contrary to theoretical predictions, beyond a cutoff point, grinding coffee more finely results in lower extraction. One potential explanation for this is that fine grinding promotes non-uniform extraction in the coffee bed. We investigate the possibility that this could occur due the interaction between dissolution and flow promoting uneven extraction. A low dimensional model in which there are two possible pathways for flow is derived and analyzed. This model shows that, below a critical grind size, there is a decreasing extraction with decreasing grind size as is seen experimentally. This is due to a complicated interplay between an initial imbalance in the porosities and permeabilities of the two pathways in the model, which is increased by flow and extraction, leading to the complete extraction of all soluble coffee from one pathway.

1.
M. I.
Cameron
,
D.
Morisco
,
D.
Hofstetter
,
E.
Uman
,
J.
Wilkinson
,
Z. C.
Kennedy
,
S. A.
Fontenot
,
W. T.
Lee
,
C. H.
Hendon
, and
J. M.
Foster
, “
Systematically improving espresso: Insights from mathematical modeling and experiment
,”
Matter
2
(
3
),
631
648
(
2020
).
2.
K. M.
Moroney
,
W. T.
Lee
,
S. B. G.
O'Brien
,
F.
Suijver
, and
J.
Marra
, “
Modelling of coffee extraction during brewing using multiscale methods: An experimentally validated model
,”
Chem. Eng. Sci.
137
,
216
234
(
2015
).
3.
A.
Fasano
and
F.
Talamucci
, “
A comprehensive mathematical model for a multispecies flow through ground coffee
,”
SIAM J. Math. Anal.
31
(
2
),
251
273
(
2000
).
4.
C.
Mo
,
L.
Navarini
,
F.
Suggi Liverani
, and
M.
Ellero
, “
Modeling swelling effects during coffee extraction with smoothed particle hydrodynamics
,”
Phys. Fluids
34
(
4
),
043104
(
2022
).
5.
E.
Boulais
and
T.
Gervais
, “
Two-dimensional convection–diffusion in multipolar flows with applications in microfluidics and groundwater flow
,”
Phys. Fluids
32
(
12
),
122001
(
2020
).
6.
K. M.
Moroney
,
W. T.
Lee
,
S. B. G.
O'Brien
,
F.
Suijver
, and
J.
Marra
, “
Asymptotic analysis of the dominant mechanisms in the coffee extraction process
,”
SIAM J. Appl. Math.
76
(
6
),
2196
2217
(
2016
).
7.
K. M.
Moroney
,
K.
O'Connell
,
P.
Meikle-Janney
,
S. B. G.
O'Brien
,
G. M.
Walker
, and
W. T.
Lee
, “
Analysing extraction uniformity from porous coffee beds using mathematical modelling and computational fluid dynamics approaches
,”
PLoS One
14
(
7
),
e0219906
(
2019
).
8.
M.
Panfilov
, “
Homogenized model with memory for two-phase compressible flow in double-porosity media
,”
Phys. Fluids
31
(
9
),
093105
(
2019
).
9.
E.
Antonopoulou
,
C. F.
Rohmann-Shaw
,
T. C.
Sykes
,
O. J.
Cayre
,
T. N.
Hunter
, and
P. K.
Jimack
, “
Numerical and experimental analysis of the sedimentation of spherical colloidal suspensions under centrifugal force
,”
Phys. Fluids
30
(
3
),
030702
(
2018
).
10.
A.
Smith
and
W. T.
Lee
, “
Brewing optimal coffee
,”
Eur. J. Phys.
42
(
2
),
025805
(
2021
).
11.
N.
Cordoba
,
L.
Pataquiva
,
C.
Osorio
,
F. L. M.
Moreno
, and
R. Y.
Ruiz
, “
Effect of grinding, extraction time and type of coffee on the physicochemical and flavour characteristics of cold brew coffee
,”
Sci. Rep.
9
(
1
),
8440
(
2019
).
12.
R.
Holdich
,
Fundamentals of Particle Technology
(
MidlandIT
,
2020
).
13.
S.
Sabet
,
M.
Barisik
,
M.
Mobedi
, and
A.
Beskok
, “
An extended Kozeny-Carman-Klinkenberg model for gas permeability in micro/nano-porous media
,”
Phys. Fluids
31
(
11
),
112001
(
2019
).
14.
D. W.
Rees-Jones
and
R. F.
Katz
, “
Reaction-infiltration instability in a compacting porous medium
,”
J. Fluid Mech.
852
,
5
36
(
2018
).
15.
C.
Soulaine
,
S.
Roman
,
A.
Kovscek
, and
H. A.
Tchelepi
, “
Mineral dissolution and wormholing from a pore-scale perspective
,”
J. Fluid Mech.
827
,
457
483
(
2017
).
16.
C.
Soulaine
,
S.
Roman
,
A.
Kovscek
, and
H. A.
Tchelepi
, “
Pore-scale modelling of multiphase reactive flow: Application to mineral dissolution with production of CO2
,”
J. Fluid Mech.
855
,
616
645
(
2018
).
17.
L. F.
Shampine
and
M. W.
Reichelt
, “
The Matlab Ode suite
,”
SIAM J. Sci. Comput.
18
(
1
),
1
22
(
1997
).
18.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes 3rd edition: The Art of Scientific Computing
(
Cambridge University Press
,
2007
).
You do not currently have access to this content.