Phakic intraocular lenses (pIOLs), particularly posterior chamber pIOLs, are becoming important for patients with high myopia and thin corneas. By phakic intraocular, we mean the ocular environmental conditions, where the natural lens is unremoved. A new posterior chamber pIOL, the sine wave phakic refractive lens (SW-PRL), is in the development stage, and its aqueous humor (AH) dynamics and the effects of intraocular geometry on the flow characteristics are not well understood. To analyze the adaptability and functionality of SW-PRL, a comparison study is made with its counterparts, the posterior chamber phakic refractive lens (PC-PRL), PC-PRL combined with peripheral iridotomy [PC-PRL(PI)], and implantable collamer lens with a central hole (ICL V4c). The result demonstrates that SW-PRL has a positive effect on AH flow circulation. Interestingly, there is a relationship between a posterior chamber flow and the type of pIOLs with vault variation. With an increase in vault, the flow between the lens and pIOLs slowed down after ICL V4C implantation but accelerated after PC-PRL (PI) implantation with little change after SW-PRL implantation. On the rear surface of the iris, the wall shear stress (WSS) was lower for PC-PRL(PI), SW-PRL, and ICL V4c (5.6 × 10−4, 6 × 10−3, and 8.2 × 10−3 Pa, respectively) compared to the PC-PRL (0.14 Pa), and on the front surface of lens, the WSS was lower for PC-PRL and SW-PRL (1.16 × 10−5 and 9.7 × 10−6 Pa, respectively) compared to the ICL V4c (8.2 × 10−4 Pa). WSS on the cornea surface was similar for each pIOL. These might provide a fresh viewpoint on the clinical decision of different intraocular lenses.

1.
World Health Organization
, “
World report on vision
,”
2019
.
2.
B. A.
Holden
,
T. R.
Fricke
,
D. A.
Wilson
,
M.
Jong
,
K. S.
Naidoo
,
P.
Sankaridurg
,
T. Y.
Wong
,
T. J.
Naduvilath
, and
S.
Resnikoff
, “
Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050
,”
Ophthalmology
123
(
5
),
1036
1042
(
2016
).
3.
T.
Kohnen
, “
Phakic intraocular lenses: Where are we now?
,”
J. Cataract Refractive Surg.
44
(
2
),
121
123
(
2018
).
4.
M.
Santhiago
,
N.
Giacomin
,
D.
Smadja
, and
S.
Bechara
, “
Ectasia risk factors in refractive surgery
,”
Clin. Ophthalmol.
10
,
713
(
2016
).
5.
H.
Chen
,
Y.
Liu
,
G.
Niu
, and
J.
Ma
, “
Excimer laser versus phakic intraocular lenses for myopia and astigmatism: A meta-analysis of randomized controlled trials
,”
Eye Contact Lens
44
(
3
),
137
143
(
2018
).
6.
A.
Barsam
and
B. D.
Allan
, “
Excimer laser refractive surgery versus phakic intraocular lenses for the correction of moderate to high myopia
,”
Cochrane Database Syst. Rev.
2014
,
CD007679
.
7.
J.
Siedlecki
,
V.
Schmelter
,
W. J.
Mayer
,
B.
Schworm
,
S. G.
Priglinger
,
M.
Dirisamer
, and
N.
Luft
, “
SMILE versus implantable collamer lens implantation for high myopia: A matched comparative study
,”
J. Refractive Surg.
36
(
3
),
150
159
(
2020
).
8.
R.
Wei
,
M.
Li
,
H.
Zhang
,
A.
Aruma
,
H.
Miao
,
X.
Wang
,
J.
Zhou
, and
X.
Zhou
, “
Comparison of objective and subjective visual quality early after implantable collamer lens V4c (ICL V4c) and small incision lenticule extraction (SMILE) for high myopia correction
,”
Acta Ophthalmol.
98
(
8
),
e943
e950
(
2020
).
9.
C. F.
Lovisolo
and
D. Z.
Reinstein
, “
Phakic intraocular lenses
,”
Surv. Ophthalmol.
50
(
6
),
549
587
(
2005
).
10.
J. L.
Güell
,
M.
Morral
,
D.
Kook
, and
T.
Kohnen
, “
Phakic intraocular lenses: Part 1: Historical overview, current models, selection criteria, and surgical techniques
,”
J. Cataract Refractive Surg.
36
(
11
),
1976
1993
(
2010
).
11.
D.
Huang
,
S. C.
Schallhorn
,
A.
Sugar
,
A. A.
Farjo
,
P. A.
Majmudar
,
W. B.
Trattler
, and
D. J.
Tanzer
, “
Phakic intraocular lens implantation for the correction of Myopia: A report by the American Academy of Ophthalmology
,”
Ophthalmology
116
(
11
),
2244
2258
(
2009
).
12.
T.
Kohnen
,
L.
LaFontaine
, and
R.
Andrew
, “
Long-term safety follow-up of an anterior chamber angle-supported phakic intraocular lens
,”
J. Cataract Refractive Surg.
43
(
9
),
1163
1170
(
2017
).
13.
T.
Kohnen
,
D.
Kook
,
M.
Morral
, and
J. L.
Güell
, “
Phakic intraocular lenses: Part 2: Results and complications
,”
J. Cataract Refractive Surg.
36
(
12
),
2168
2194
(
2010
).
14.
L.
Drolsum
and
O.
Kristianslund
, “
Implantation of retropupillary iris‐claw lenses: A review on surgical management and outcomes
,”
Acta Ophthalmol.
99
(
8
),
826
836
(
2021
).
15.
M. S.
Kim
,
S. J.
Park
,
K.
Joo
,
H. G.
Kang
,
M.
Kim
, and
S. J.
Woo
, “
Single-haptic dislocation of retropupillary iris-claw intraocular lens: Outcomes of reenclavation
,”
Ophthalmic Surg. Lasers Imaging Retina
51
(
7
),
384
390
(
2020
).
16.
G. A.
van Rijn
,
Z. S.
Gaurisankar
,
A. P.
Ilgenfritz
,
J. E. E.
Lima
,
G. W.
Haasnoot
,
J.-W. M.
Beenakker
,
Y. Y. Y.
Cheng
, and
G. P. M.
Luyten
, “
Middle- and long-term results after iris-fixated phakic intraocular lens implantation in myopic and hyperopic patients: A meta-analysis
,”
J. Cataract Refractive Surg.
46
(
1
),
125
137
(
2020
).
17.
R. J.
Pérez-Cambrodí
,
D. P.
Piñero
,
T.
Ferrer-Blasco
,
A.
Cerviño
, and
R.
Brautaset
, “
The posterior chamber phakic refractive lens (PRL): A review
,”
Eye
27
(
1
),
14
21
(
2013
).
18.
T.
Nakamura
,
N.
Isogai
,
T.
Kojima
,
Y.
Yoshida
, and
Y.
Sugiyama
, “
Posterior chamber phakic intraocular lens implantation for the correction of myopia and myopic astigmatism: A retrospective 10-year follow-up study
,”
Am. J. Ophthalmol.
206
,
1
10
(
2019
).
19.
H.
Jamali
,
S.
Jahanian
, and
R.
Gharebaghi
, “
Effects of laser peripheral iridotomy on corneal endothelial cell density and cell morphology in primary angle closure suspect subjects
,”
J. Ophthalmic Vision Res.
11
(
3
),
258
(
2016
).
20.
S.
Radhakrishnan
,
P. P.
Chen
,
A. K.
Junk
,
K.
Nouri-Mahdavi
, and
T. C.
Chen
, “
Laser peripheral iridotomy in primary angle closure: A report by the American Academy of Ophthalmology
,”
Ophthalmology
125
(
7
),
1110
1120
(
2018
).
21.
S.
Pose-Bazarra
and
A.
Azuara-Blanco
, “
Role of lens extraction and laser peripheral iridotomy in treatment of glaucoma
,”
Curr. Opin. Ophthalmol.
29
(
1
),
96
99
(
2018
).
22.
F.
Kianersi
,
M. H.
Taghdiri
,
H.
Kianersi
,
A.
Bagi
, and
A.
Naderi Beni
, “
Reactivation of varicella-zoster virus anterior uveitis after YAG peripheral iridotomy
,”
Ocul. Immunol. Inflammation
28
(
6
),
956
957
(
2020
).
23.
K.
Shimizu
,
K.
Kamiya
,
A.
Igarashi
, and
T.
Shiratani
, “
Early clinical outcomes of implantation of posterior chamber phakic intraocular lens with a central hole (Hole ICL) for moderate to high myopia
,”
Br. J. Ophthalmol.
96
(
3
),
409
412
(
2012
).
24.
M.
Packer
, “
The implantable collamer lens with a central port: Review of the literature
,”
Clin. Ophthalmol.
12
,
2427
2438
(
2018
).
25.
T.
Shiratani
,
K.
Shimizu
,
K.
Fujisawa
,
S.
Uga
,
K.
Nagano
, and
Y.
Murakami
, “
Crystalline lens changes in porcine eyes with implanted phakic IOL (ICL) with a central hole
,”
Graefe's Arch. Clin. Exp. Ophthalmol.
246
(
5
),
719
728
(
2008
).
26.
S.
Cerpa Manito
,
A.
Sánchez Trancón
,
O.
Torrado Sierra
,
A. M.
Baptista
, and
P. M.
Serra
, “
Biometric and ICL-related risk factors associated to sub-optimal vaults in eyes implanted with implantable collamer lenses
,”
Eye Vision
8
(
1
),
26
(
2021
).
27.
T.
Eppig
,
C.
Spira
,
T.
Tsintarakis
,
M.
El-Husseiny
,
A.
Cayless
,
M.
Müller
,
B.
Seitz
, and
A.
Langenbucher
, “
Ghost-image analysis in phakic intraocular lenses with central hole as a potential cause of dysphotopsia
,”
J. Cataract Refractive Surg.
41
(
11
),
2552
2559
(
2015
).
28.
L.
Zhu
and
K.
Sakai
, “
Simulation of blood flow past distal arteriovenous-graft anastomosis with intimal hyperplasia
,”
Phys. Fluids
33
(
5
),
051905
(
2021
).
29.
P.
Jing
,
S.
Ii
,
X.
Wang
,
K.
Sugiyama
,
S.
Noda
, and
X.
Gong
, “
Effects of fluid–cell–vessel interactions on the membrane tensions of circulating tumor cells in capillary blood flows
,”
Phys. Fluids
34
(
3
),
031904
(
2022
).
30.
Y.
Liu
,
N.
Xie
,
Y.
Tang
, and
Y.
Zhang
, “
Investigation of hemocompatibility and vortical structures for a centrifugal blood pump based on large-eddy simulation
,”
Phys. Fluids
34
(
11
),
115111
(
2022
).
31.
C.
Cox
,
M. R.
Najjari
, and
M. W.
Plesniak
, “
Three-dimensional vortical structures and wall shear stress in a curved artery model
,”
Phys. Fluids
31
(
12
),
121903
(
2019
).
32.
G.
Di Labbio
and
L.
Kadem
, “
Reduced-order modeling of left ventricular flow subject to aortic valve regurgitation
,”
Phys. Fluids
31
(
3
),
031901
(
2019
).
33.
Z.
Qin
,
L.
Meng
,
F.
Yang
,
C.
Zhang
, and
B.
Wen
, “
Aqueous humor dynamics in human eye: A lattice Boltzmann study
,”
Math. Biosci. Eng.
18
(
5
),
5006
5028
(
2021
).
34.
W.
Wang
,
X.
Qian
,
Q.
Li
,
G.
Zhang
,
H.
Zhao
,
T.
Li
,
Y.
Yu
,
H.
Song
, and
Z.
Liu
, “
Experimental study of aqueous humor flow in a transparent anterior segment phantom by using PIV technique
,”
Mol. Cell. Biomech.
16
(
1
),
59
74
(
2019
).
35.
G. J.
Martínez Sánchez
,
C.
Escobar del Pozo
,
J. A.
Rocha Medina
,
J.
Naude
, and
A.
Brambila Solorzano
, “
Numerical simulation of the aqueous humor flow in the eye drainage system; a healthy and pathological condition comparison
,”
Med. Eng. Phys.
83
,
82
92
(
2020
).
36.
H.
Yi
,
Y.
Feng
, and
H.
Gappa-Fahlenkamp
, “
Analysis of topical dosing and administration effects on ocular drug delivery in a human eyeball model using computational fluid dynamics
,”
Comput. Biol. Med.
141
,
105016
(
2022
).
37.
J.
Bayat
,
H.
Emdad
, and
O.
Abouali
, “
3D numerical investigation of the fluid mechanics in a partially liquefied vitreous humor due to saccadic eye movement
,”
Comput. Biol. Med.
125
,
103955
(
2020
).
38.
J.
Bayat
,
H.
Emdad
, and
O.
Abouali
, “
A mechanical model of partially liquefied vitreous dynamics induced by saccadic eye movement within a realistic shape of vitreous cavity
,”
Phys. Fluids
34
(
2
),
021905
(
2022
).
39.
A.
Bhandari
,
A.
Bansal
, and
N.
Sinha
, “
Effect of aging on heat transfer, fluid flow and drug transport in anterior human eye: A computational study
,”
J. Controlled Release
328
,
286
303
(
2020
).
40.
A.
Mauro
and
S.
Mohamed
, “
Three dimensional heat and mass transfer in human eye based on porous medium approach
,”
Int. J. Heat Mass Transfer
158
,
119994
(
2020
).
41.
G. J.
Martínez Sánchez
,
C.
Escobar del Pozo
, and
J. A.
Rocha Medina
, “
Numerical model of aqueous humor drainage: Effects of collector channel position
,”
Med. Eng. Phys.
65
,
24
30
(
2019
).
42.
T.
Kawamorita
,
H.
Uozato
, and
K.
Shimizu
, “
Fluid dynamics simulation of aqueous humour in a posterior-chamber phakic intraocular lens with a central perforation
,”
Graefe's Arch. Clin. Exp. Ophthalmol.
250
(
6
),
935
939
(
2012
).
43.
T.
Kawamorita
,
K.
Shimizu
, and
N.
Shoji
, “
Theoretical study on the need for laser iridotomy in an implantable collamer lens with a hole using computational fluid dynamics
,”
Eye
31
(
5
),
795
801
(
2017
).
44.
J. I.
Fernández-Vigo
,
A.
Macarro-Merino
,
J.
Fernández-Francos
,
L.
De-Pablo-Gómez-de-Liaño
,
J. M.
Martínez-de-la-Casa
,
J.
García-Feijóo
, and
J. Á.
Fernández-Vigo
, “
Computational study of aqueous humor dynamics assessing the vault and the pupil diameter in two posterior-chamber phakic lenses
,”
Invest. Ophthalmol. Visual Sci.
57
(
11
),
4625
(
2016
).
45.
J. I.
Fernández-Vigo
,
A. C.
Marcos
,
R.
Agujetas
,
J. M.
Montanero
,
I.
Sánchez-Guillén
,
J.
García-Feijóo
,
A.
Pandal-Blanco
,
J. Á.
Fernández-Vigo
, and
A.
Macarro-Merino
, “
Computational simulation of aqueous humour dynamics in the presence of a posterior-chamber versus iris-fixed phakic intraocular lens
,”
PLoS One
13
(
8
),
e0202128
(
2018
).
46.
C.-W.
Lin
and
F.
Yuan
, “
Numerical simulations of ethacrynic acid transport from precorneal region to trabecular meshwork
,”
Ann. Biomed. Eng.
38
(
3
),
935
944
(
2010
).
47.
B. C.
Saha
,
R.
Kumari
,
B. P.
Sinha
,
A.
Ambasta
, and
S.
Kumar
, “
Lasers in glaucoma: An overview
,”
Int. Ophthalmol.
41
(
3
),
1111
1128
(
2021
).
48.
J.-C.
Cai
,
Y.-L.
Chen
,
Y.-H.
Cao
,
A.
Babenko
, and
X.
Chen
, “
Numerical study of aqueous humor flow and iris deformation with pupillary block and the efficacy of laser peripheral iridotomy
,”
Clin. Biomech.
92
,
105579
(
2022
).
49.
R.
Repetto
,
J. O.
Pralits
,
J. H.
Siggers
, and
P.
Soleri
, “
Phakic iris-fixated intraocular lens placement in the anterior chamber: Effects on aqueous flow
,”
Invest. Ophthalmol. Visual Sci.
56
(
5
),
3061
(
2015
).
50.
S. V.
Patankar
and
D. B.
Spalding
, “
A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows
,”
Int. J. Heat Mass Transfer
15
(
10
),
1787
1806
(
1972
).
51.
J. J.
Heys
and
V. H.
Barocas
, “
A Boussinesq model of natural convection in the human eye and the formation of Krukenberg's spindle
,”
Ann. Biomed. Eng.
30
(
3
),
392
401
(
2002
).
52.
H.
Song
,
L.
Li
,
W.
Wang
,
Q.
Li
, and
Z.
Liu
, “
Numerical simulation of multi-field coupling in aqueous humor under the condition of dynamic pressure
,”
Int. J. Comput. Methods
16
(
03
),
1842001
(
2019
).
53.
D. M.
Silver
and
H. A.
Quigley
, “
Aqueous flow through the iris-lens channel: Estimates of differential pressure between the anterior and posterior chambers
,”
J. Glaucoma
13
(
2
),
100
107
(
2004
).
54.
Y.
Kaji
,
T.
Oshika
,
T.
Usui
, and
J.
Sakakibara
, “
Effect of shear stress on attachment of corneal endothelial cells in association with corneal endothelial cell loss after laser iridotomy
,”
Cornea
24
(
8
),
S55
S58
(
2005
).
55.
M.
Dvoriashyna
,
R.
Repetto
, and
J. H.
Tweedy
, “
Oscillatory and steady streaming flow in the anterior chamber of the moving eye
,”
J. Fluid Mech.
863
,
904
926
(
2019
).
56.
M.
Dvoriashyna
,
A. J. E.
Foss
,
E. A.
Gaffney
, and
R.
Repetto
, “
A mathematical model of aqueous humor production and composition
,”
Invest. Ophthalmol. Visual Sci.
63
(
9
),
1
(
2022
).
57.
J. J.
Heys
,
V. H.
Barocas
, and
M. J.
Taravella
, “
Modeling passive mechanical interaction between aqueous humor and iris
,”
J. Biomech. Eng.
123
(
6
),
540
547
(
2001
).
58.
M.
Dvoriashyna
,
R.
Repetto
,
M. R.
Romano
, and
J. H.
Tweedy
, “
Aqueous humour flow in the posterior chamber of the eye and its modifications due to pupillary block and iridotomy
,”
Math. Med. Biol.
35
(
4
),
447
467
(
2018
).
You do not currently have access to this content.