Aerodynamic noise control is important for various engineering applications, including automobiles. To develop effective control methods for the flow and sound of bluff bodies, flow past a cylinder is usually studied as a simplified problem. In this study, a passive control technique using surface protrusions was developed to suppress the aeolian tone generated by a two-dimensional laminar flow past a circular cylinder. Protrusions were created on the front and rear surfaces of the cylinder using an optimization approach based on the lattice Boltzmann and adjoint methods, allowing the optimization of complex geometries. The computational results revealed that a pair of protrusions on the front surface could stabilize the separated shear layers by fixing the separation points to their tips, whereas a pair of protrusions on the rear surface can stabilize the separated shear layers by interfering with the interaction between the top and bottom shear layers. Consequently, these shapes effectively suppressed the vortex shedding and aeolian tone while decreasing the mean drag. A shape with symmetrical protrusions on the front and rear surfaces reduced the aeolian tone by 3.6 dB.

1.
M. M.
Zdravkovich
, “
Review and classification of various aerodynamic and hydrodynamic means for suppressing vortex shedding
,”
J. Wind Eng. Ind. Aerodyn.
7
,
145
(
1981
).
2.
H.
Choi
,
W. P.
Jeon
, and
J.
Kim
, “
Control of flow over a bluff body
,”
Annu. Rev. Fluid Mech.
40
,
113
(
2008
).
3.
S.
Rashidi
,
M.
Hayatdavoodi
, and
J. A.
Esfahani
, “
Vortex shedding suppression and wake control: A review
,”
Ocean Eng.
126
,
57
(
2016
).
4.
T. F.
Geyer
and
E.
Sarradj
, “
Circular cylinders with soft porous cover for flow noise reduction
,”
Exp. Fluids
57
,
30
(
2016
).
5.
T. F.
Geyer
, “
Experimental evaluation of cylinder vortex shedding noise reduction using porous material
,”
Exp. Fluids
61
,
153
(
2020
).
6.
Y.
Xing
,
P.
Liu
,
H.
Guo
, and
L.
Li
, “
Effect of helical cables on cylinder noise control
,”
Appl. Acoust.
122
,
152
(
2017
).
7.
L.
Li
,
P.
Liu
,
Y.
Xing
, and
H.
Guo
, “
Experimental investigation on the noise reduction method of helical cables for a circular cylinder and tandem cylinders
,”
Appl. Acoust.
152
,
79
(
2019
).
8.
L.
Kamps
,
T. F.
Geyer
,
E.
Sarradj
, and
C.
Brücker
, “
Vortex shedding noise of a cylinder with hairy flaps
,”
J. Sound Vib.
388
,
69
(
2017
).
9.
C.
Zheng
,
P.
Zhou
,
S.
Zhong
,
X.
Zhang
,
X.
Huang
, and
R. C. H.
So
, “
An experimental investigation of drag and noise reduction from a circular cylinder using longitudinal grooves
,”
Phys. Fluids
33
,
115110
(
2021
).
10.
A.
Roshko
, “
On the wake and drag of bluff bodies
,”
J. Aeronaut. Sci.
22
,
124
(
1955
).
11.
E. A.
Anderson
and
A. A.
Szewczyk
, “
Effects of a splitter plate on the near wake of a circular cylinder in 2 and 3-dimensional flow configurations
,”
Exp. Fluids
23
,
161
(
1997
).
12.
Y.
Jin
and
L. P.
Chamorro
, “
Passive pitching of splitters in the trailing edge of elliptic cylinders
,”
J. Fluid Mech.
826
,
363
(
2017
).
13.
D.
Gao
,
Y.
Huang
,
W. L.
Chen
,
G.
Chen
, and
H.
Li
, “
Control of circular cylinder flow via bilateral splitter plates
,”
Phys. Fluids
31
,
057105
(
2019
).
14.
Y.
Sun
,
J.
Wang
,
D.
Fan
,
H.
Zheng
, and
Z.
Hu
, “
The roles of rigid splitter plates in flow-induced vibration of a circular cylinder
,”
Phys. Fluids
34
,
114114
(
2022
).
15.
K.
Kwon
and
H.
Choi
, “
Control of laminar vortex shedding behind a circular cylinder using splitter plates
,”
Phys. Fluids
8
,
479
(
1996
).
16.
J. Y.
Hwang
,
K. S.
Yang
, and
S. H.
Sun
, “
Reduction of flow-induced forces on a circular cylinder using a detached splitter plate
,”
Phys. Fluids
15
,
2433
(
2003
).
17.
R.
Wang
,
Y.
Bao
,
D.
Zhou
,
H.
Zhu
,
H.
Ping
,
Z.
Han
,
D.
Serson
, and
H.
Xu
, “
Flow instabilities in the wake of a circular cylinder with parallel dual splitter plates attached
,”
J. Fluid Mech.
874
,
299
(
2019
).
18.
X.
Sun
,
C. S.
Suh
,
Z.-H.
Ye
, and
B.
Yu
, “
Dynamics of a circular cylinder with an attached splitter plate in laminar flow: A transition from vortex-induced vibration to galloping
,”
Phys. Fluids
32
,
027104
(
2020
).
19.
M.
Zhang
,
O.
Øiseth
, and
F.
Xu
, “
Laminar flow-induced vibration of a three-degree-of-freedom circular cylinder with an attached splitter plate
,”
Phys. Fluids
33
,
113605
(
2021
).
20.
D.
You
,
H.
Choi
,
M. R.
Choi
, and
S. H.
Kang
, “
Control of flow-induced noise behind a circular cylinder using splitter plates
,”
AIAA J.
36
,
1961
(
1998
).
21.
M. S. M.
Ali
,
C. J.
Doolan
, and
V.
Wheatley
, “
Aeolian tones generated by a square cylinder with a detached flat plate
,”
AIAA J.
51
,
291
(
2013
).
22.
B.
Mahato
,
N.
Ganta
, and
Y. G.
Bhumkar
, “
Mitigation of aerodynamic sound for a laminar flow past a square cylinder using a pair of cowl plates
,”
Phys. Fluids
32
,
076108
(
2020
).
23.
B.
Mahato
,
N.
Ganta
, and
Y. G.
Bhumkar
, “
Effective control of aeolian tone using a pair of splitter plates
,”
J. Sound Vib.
494
,
115906
(
2021
).
24.
W.
Chen
,
X.
Li
, and
W.
Zhang
, “Shape optimization to suppress the lift oscillation of flow past a stationary circular cylinder,”
Phys. Fluids
31
,
063604
(
2019
).
25.
W. J.
Gonçalves da Silva Pinto
and
F.
Margnat
, “
A shape optimization procedure for cylinders aeolian tone
,”
Comput. Fluids
182
,
37
(
2019
).
26.
W. J.
Gonçalves da Silva Pinto
and
F.
Margnat
, “
Shape optimization for the noise induced by the flow over compact bluff bodies
,”
Comput. Fluids
198
,
104400
(
2020
).
27.
S.
Marié
,
D.
Ricot
, and
P.
Sagaut
, “
Comparison between lattice Boltzmann method and Navier–Stokes high order schemes for computational aeroacoustics
,”
J. Comput. Phys.
228
,
1056
(
2009
).
28.
K.
Kusano
,
K.
Yamada
, and
M.
Furukawa
, “
Aeroacoustic simulation of broadband sound generated from low-Mach-number flows using a lattice Boltzmann method
,”
J. Sound Vib.
467
,
115044
(
2020
).
29.
H.
Chen
,
S.
Chen
, and
W. H.
Matthaeus
, “
Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method
,”
Phys. Rev. A
45
,
R5339
(
1992
).
30.
Y. H.
Qian
,
D.
D'Humières
, and
P.
Lallemand
, “
Lattice BGK models for Navier-Stokes equation
,”
EPL
17
,
479
(
1992
).
31.
D.
Yu
,
R.
Mei
, and
W.
Shyy
, “A unified boundary treatment in lattice Boltzmann method,” in
Proceedings of 41st Aerospace Science Meeting Exhibition
(AIAA,
2003
), Vol.
8
, p.
953
.
32.
K.
Kusano
, “
Adjoint sensitivity analysis method based on lattice Boltzmann equation for flow-induced sound problems
,”
Comput. Fluids
248
,
105662
(
2022
).
33.
E.
Vergnault
and
P.
Sagaut
, “
An adjoint-based lattice Boltzmann method for noise control problems
,”
J. Comput. Phys.
276
,
39
(
2014
).
34.
I.
Cheylan
,
G.
Fritz
,
D.
Ricot
, and
P.
Sagaut
, “
Shape optimization using the adjoint lattice Boltzmann method for aerodynamic applications
,”
AIAA J.
57
,
2758
(
2019
).
35.
N.
Alemdaroglu
,
J. C.
Rebillat
, and
R.
Goethals
, “
An aeroacoustic coherence function method applied to circular cylinder flows
,”
J. Sound Vib.
69
,
427
(
1980
).
36.
C. H. K.
Williamson
, “
Vortex dynamics in the cylinder wake
,”
Annu. Rev. Fluid Mech.
28
,
477
(
1996
).
37.
O.
Inoue
and
N.
Hatakeyama
, “
Sound generation by a two-dimensional circular cylinder in a uniform flow
,”
J. Fluid Mech.
471
,
285
(
2002
).
38.
H.
Akima
, “
A new method of interpolation and smooth curve fitting based on local procedures
,”
J. ACM
17
,
589
(
1970
).
39.
X.
Shi
,
M.
Alam
, and
H.
Bai
, “
Wakes of elliptical cylinders at low Reynolds number
,”
Int. J. Heat Fluid Flow
82
,
108553
(
2020
).
You do not currently have access to this content.