This paper reports an experimental study of tip vortex flowfield and cavitation inception of a tip-loaded hydrofoil. Vortex strength, wandering, and turbulence statistics are characterized using stereo particle image velocimetry (SPIV) in a water tunnel facility, at a chord Reynolds number of 1.3 × 10 6. Cavitation physics are characterized using high-speed videography and dual-hydrophone acoustic cavitation measurements. The loading of the rectangular planform hydrofoil has a maximum at 65% span, 56% greater than that at the root, i.e., the hydrofoil loading is representative of non-elliptically loaded open propellers. Acoustic cavitation inception is quantified and is observed to precede visual cavitation onset using unaided and high-speed imaging. Measurements reported here show that vorticity fluctuations are nearly of the same magnitude as the ensemble vorticity. Instantaneous measurements of vorticity at the trailing edge, 1 2-chord downstream, and one-chord downstream positions are reported. Their peak magnitudes are located adjacent to the ensemble vortex center and are between four and five times the ensemble mean. The fluctuating vorticity measurements, taken in conjunction with high-speed video observations, provide insight into the hydrodynamic conditions responsible for intermittent cavitation events. The reported measurements elucidate instantaneous and mean turbulence physics associated with vortex cavitation and can provide a validation basis for numerical simulations.

1.
R. E.
Arndt
, “
Cavitation in vortical flows
,”
Annu. Rev. Fluid Mech.
34
(
1
),
143
175
(
2002
).
2.
B.
McCormick
, “
On cavitation produced by a vortex trailing from a lifting surface
,”
ASME J. Basic Eng.
84
(
3
),
369
378
(
1962
).
3.
D. H.
Fruman
,
P.
Cerrutti
,
T.
Pichon
, and
P.
Dupont
, “
Effect of hydrofoil planform on tip vortex roll-up and cavitation
,”
J. Fluids Eng.
117
(
1
),
162
169
(
1995
).
4.
Y. T.
Shen
,
S.
Gowing
, and
S.
Jessup
, “
Tip vortex cavitation inception scaling for high Reynolds number applications
,”
J. Fluids Eng.
131
(
7
),
071301
(
2009
).
5.
B. H.
Maines
and
R. E. A.
Arndt
, “
Tip vortex formation and cavitation
,”
J. Fluids Eng.
119
(
2
),
413
419
(
1997
).
6.
W. G.
Souders
and
G. P.
Platzer
, “
Tip vortex cavitation characteristics and delay of inception on a three-dimensional hydrofoil
,”
Report No. 81/007
(
David W Taylor Naval Ship Research and Development Center Report
,
1981
).
7.
P.
Pennings
,
J.
Westerweel
, and
T.
van Terwisga
, “
Flow field measurement around vortex cavitation
,”
Exp. Fluids
56
(
206
),
1385
1402
(
2015
).
8.
X.
Peng
,
L.
Xu
,
Y.
Liu
,
G.
Zhang
,
Y.
Cao
,
F.
Hong
, and
K.
Yan
, “
Experimental measurement of tip vortex flow field with/without cavitation in an elliptic hydrofoil
,”
J. Hydrodynamics
29
(
6
),
939
953
(
2017
).
9.
M. T.
Khoo
,
J. A.
Venning
,
B. W.
Pearce
, and
P.
Brandner
, “
Nucleation and cavitation number effects on tip vortex cavitation dynamics and noise
,”
Exp. Fluids
62
(
10
),
216
234
(
2021
).
10.
M.
Dghim
,
K. B.
Miloud
,
M.
Ferchichi
, and
H.
Fellouah
, “
Meandering of a wing-tip vortex in a grid-generated turbulent flow
,”
Phys. Fluids
33
(
11
),
115131
(
2021
).
11.
L.
Graftieaux
,
M.
Michard
, and
N.
Grosjean
, “
Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows
,”
Meas. Sci. Technol.
12
(
9
),
1422
(
2001
).
12.
A.
Amini
,
M.
Reclari
,
T.
Sano
,
M.
Iino
,
M.
Dreyer
, and
M.
Farhat
, “
On the physical mechanism of tip vortex cavitation hysteresis
,”
Exp. Fluids
60
(
7
),
118
(
2019
).
13.
M. T.
Khoo
,
J. A.
Venning
,
B. W.
Pearce
, and
P.
Brandner
, “
Statistical aspects of tip vortex cavitation inception and desinence in a nuclei deplete flow
,”
Exp. Fluids
61
(
6
),
145
(
2020
).
14.
X.
Wang
,
X.
Bai
,
Z.
Qian
,
H.
Cheng
, and
B.
Ji
, “
Modal analysis of tip vortex cavitation with an insight on how vortex roll-up enhances its instability
,”
Int. J. Multiphase Flow
157
,
104254
(
2022
).
15.
X.
Peng
,
L. X.
Zhang
,
B. L.
Wang
,
L. H.
Xu
,
M. T.
Song
,
Y.
Cao
,
Y. W.
Liu
,
F.
Hong
, and
K.
Yan
, “
Study of tip vortex cavitation inception and vortex singing
,”
J. Hydrodynamics
31
(
6
),
1170
1177
(
2019
).
16.
D.
Hanson
, “
Cavitation inception for non-elliptically loaded fins
,” Master's thesis (
The Pennsylvania State University
,
2012
).
17.
K.-J.
Lee
,
T.
Hoshino
, and
J.-H.
Lee
, “
A lifting surface optimization method for the design of marine propeller blades
,”
Ocean Eng.
88
,
472
479
(
2014
).
18.
J. D.
Ballard
,
K. L.
Orlof
, and
A.
Luebs
, “
Effect of tip shape on blade loading characteristics and wake geometry for a two-bladed rotor in hover
,”
J. Am. Helicopter Soc.
25
(
1
),
30
35
(
1980
).
19.
S.
Gaggero
,
G.
Tani
,
M.
Viviani
, and
F.
Conti
, “
A study on the numerical prediction of propellers cavitating tip vortex
,”
Ocean Eng.
92
,
137
161
(
2014
).
20.
O. R.
Bilgi
and
Ö.
Savas
, “
Vortex wakes of tip loaded rotors at low Reynolds numbers
,”
Phys. Fluids
33
(
7
),
077102
(
2021
).
21.
A.
Amini
,
M.
Reclari
,
T.
Sano
,
M.
Iino
, and
M.
Farhat
, “
Suppressing tip vortex cavitation by winglets
,”
Exp. Fluids
60
(
11
),
159
(
2019
).
22.
W. J.
Devenport
,
M. C.
Rife
,
S. I.
Liapis
, and
G. J.
Follin
, “
The structure and development of a wing-tip vortex
,”
J. Fluid Mech.
312
,
67
106
(
1996
).
23.
J. S.
Chow
,
G. G.
Zilliac
, and
P.
Bradshaw
, “
Mean and turbulence measurements in the near field of a wingtip vortex
,”
AIAA J.
35
(
10
),
1561
1567
(
1997
).
24.
K.
Park
,
H.
Seol
,
W.
Choi
, and
S.
Lee
, “
Numerical prediction of tip vortex cavitation behavior and noise considering nuclei size and distribution
,”
Appl. Acoust.
70
(
5
),
674
680
(
2009
).
25.
A.
Asnaghi
,
U.
Svennberg
, and
R. E.
Bensow
, “
Analysis of tip vortex inception prediction methods
,”
Ocean Eng.
167
,
187
203
(
2018
).
26.
T.
Brockett
,
Minimum Pressure Envelopes for Modified NACA-66 Sections With NACA a = 0.8 Camber and Buships Type I and Type II Sections
(
David Taylor Model Basin
,
1966
), Vol.
1780
.
27.
G. C.
Lauchle
,
M. L.
Billet
, and
S.
Deutsch
,
High-Reynolds Number Liquid Flow Measurements
(
Springer
,
Berlin, Heidelberg
,
1989
), pp.
95
157
.
28.
N. K.
Madavan
,
S.
Deutsch
, and
C. L.
Merkle
, “
Reduction of turbulent skin friction by microbubbles
,”
Phys. Fluids
27
(
2
),
356
363
(
1984
).
29.
W. C.
Zierke
and
W. A.
Straka
, “
Flow visualization and the three-dimensional flow in an axial-flow pump
,”
J. Propul. Power
12
(
2
),
250
259
(
1996
).
30.
A. L.
Chen
,
J. D.
Jacob
, and
O.
Savas
, “
Dynamics of corotating vortex pairs in the wakes of flapped airfoils
,”
J. Fluid Mech.
382
,
155
193
(
1999
).
31.
M. S.
Chong
,
A. E.
Perry
, and
B. J.
Cantwell
, “
A general classification of three-dimensional flow fields
,”
Phys. Fluids A
2
(
5
),
765
777
(
1990
).
You do not currently have access to this content.