Modeling and simulation of granular materials have received great attention in a wide range of scientific and engineering fields. With various discrete or continuum-based methods facing different aspects of the complexity of granular materials, their multi-scale coupling may lead to more effective and efficient methods. In this work, a novel spatial–temporal multiscale method is proposed with spatially overlapped continuum and discrete systems running alternately at different time steps to accelerate the simulation. The continuum system aims at predicting the potential position of each particle, and the discrete system is utilized to provide particle-level information and correct the prediction of the continuum system. The feasibility and accuracy of this method are demonstrated by comparing to typical traditional methods for silo discharge.

1.
H. M.
Jaeger
,
S. R.
Nagel
, and
R. P.
Behringer
, “
Granular solids, liquids, and gases
,”
Rev. Mod. Phys.
68
,
1259
(
1996
).
2.
L.
Bai
,
Q.
Zheng
, and
A.
Yu
, “
FEM simulation of particle flow and convective mixing in a cylindrical bladed mixer
,”
Powder Technol.
313
,
175
(
2017
).
3.
H.
Diarra
,
V.
Mazel
,
A.
Boillon
,
L.
Rehault
,
V.
Busignies
,
S.
Bureau
, and
P.
Tchoreloff
, “
Finite element method (FEM) modeling of the powder compaction of cosmetic products: Comparison between simulated and experimental results
,”
Powder Technol.
224
,
233
(
2012
).
4.
L.
Staron
,
P.-Y.
Lagrée
, and
S.
Popinet
, “
Continuum simulation of the discharge of the granular silo
,”
Eur. Phys. J. E
37
,
1
(
2014
).
5.
C. T.
Nguyen
,
C. T.
Nguyen
,
H. H.
Bui
,
G. D.
Nguyen
, and
R.
Fukagawa
, “
A new SPH-based approach to simulation of granular flows using viscous damping and stress regularisation
,”
Landslides
14
,
69
(
2017
).
6.
H. H.
Bui
,
R.
Fukagawa
,
K.
Sako
, and
S.
Ohno
, “
Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model
,”
Int. J. Numer. Anal. Methods Geomech.
32
,
1537
(
2008
).
7.
M.
Jandaghian
,
A.
Krimi
, and
A.
Shakibaeinia
, “
Enhanced weakly-compressible MPS method for immersed granular flows
,”
Adv. Water Resour.
152
,
103908
(
2021
).
8.
L.
Ke
,
Y.-C.
Jin
,
T.
Xu
, and
Y.-C.
Tai
, “
Investigating the physical characteristics of dense granular flows by coupling the weakly compressible moving particle semi-implicit method with the rheological model
,”
Acta Geotech.
15
,
1815
(
2020
).
9.
E. J.
Nodoushan
,
A.
Shakibaeinia
, and
K.
Hosseini
, “
A multiphase meshfree particle method for continuum-based modeling of dry and submerged granular flows
,”
Powder Technol.
335
,
258
(
2018
).
10.
M.
Tajnesaie
,
A.
Shakibaeinia
, and
K.
Hosseini
, “
Meshfree particle numerical modelling of sub-aerial and submerged landslides
,”
Comput. Fluids
172
,
109
(
2018
).
11.
Z.
Więckowski
, “
The material point method in large strain engineering problems
,”
Comput. Methods Appl. Mech. Eng.
193
,
4417
(
2004
).
12.
S.
Dunatunga
and
K.
Kamrin
, “
Continuum modelling and simulation of granular flows through their many phases
,”
J. Fluid Mech.
779
,
483
(
2015
).
13.
G.
Klár
,
T.
Gast
,
A.
Pradhana
,
C.
Fu
,
C.
Schroeder
,
C.
Jiang
, and
J.
Teran
, “
Drucker-Prager elastoplasticity for sand animation
,”
ACM Trans. Graphics
35
,
1
(
2016
).
14.
E.
Aharonov
and
D.
Sparks
, “
Rigidity phase transition in granular packings
,”
Phys. Rev. E
60
,
6890
(
1999
).
15.
C.
Josserand
,
A. V.
Tkachenko
,
D. M.
Mueth
, and
H. M.
Jaeger
, “
Memory effects in granular materials
,”
Phys. Rev. Lett.
85
,
3632
(
2000
).
16.
D.
Bi
,
J.
Zhang
,
B.
Chakraborty
, and
R. P.
Behringer
, “
Jamming by shear
,”
Nature
480
,
355
(
2011
).
17.
N.
Guo
and
J.
Zhao
, “
The signature of shear-induced anisotropy in granular media
,”
Comput. Geotech.
47
,
1
(
2013
).
18.
G.
Lefebvre
,
A.
Merceron
, and
P.
Jop
, “
Interfacial instability during granular erosion
,”
Phys. Rev. Lett.
116
,
068002
(
2016
).
19.
P. A.
Cundall
and
O. D.
Strack
, “
A discrete numerical model for granular assemblies
,”
Geotechnique
29
,
47
(
1979
).
20.
Z.
Xie
,
Y.
Shen
,
K.
Takabatake
,
A.
Yamaguchi
, and
M.
Sakai
, “
Coarse-grained DEM study of solids sedimentation in water
,”
Powder Technol.
361
,
21
(
2020
).
21.
M.
Sakai
,
M.
Abe
,
Y.
Shigeto
,
S.
Mizutani
,
H.
Takahashi
,
A.
Viré
,
J. R.
Percival
,
J.
Xiang
, and
C. C.
Pain
, “
Verification and validation of a coarse grain model of the DEM in a bubbling fluidized bed
,”
Chem. Eng. J.
244
,
33
(
2014
).
22.
X.
Chen
and
J.
Wang
, “
Hybrid discrete-continuum model for granular flow
,”
Procedia Eng.
102
,
661
(
2015
).
23.
E.
Onate
and
J.
Rojek
, “
Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems
,”
Comput. Methods Appl. Mech. Eng.
193
,
3087
(
2004
).
24.
C.
Wellmann
and
P.
Wriggers
, “
A two-scale model of granular materials
,”
Comput. Methods Appl. Mech. Eng.
205–208
,
46
(
2012
).
25.
P. Y.
Chen
,
M.
Chantharayukhonthorn
,
Y.
Yue
,
E.
Grinspun
, and
K.
Kamrin
, “
Hybrid discrete-continuum modeling of shear localization in granular media
,”
J. Mech. Phys. Solids
153
,
104404
(
2021
).
26.
F.
Tu
,
Y.
Jiao
,
Z.
Chen
,
J.
Zou
, and
Z.
Zhao
, “
Stress continuity in DEM-FEM multiscale coupling based on the generalized bridging domain method
,”
Appl. Math. Modell.
83
,
220
(
2020
).
27.
Y.
Yue
,
B.
Smith
,
P. Y.
Chen
,
M.
Chantharayukhonthorn
,
K.
Kamrin
, and
E.
Grinspun
, “
Hybrid grains: Adaptive coupling of discrete and continuum simulations of granular media
,”
ACM Trans. Graphics
37
,
1
(
2018
).
28.
H.
Cheng
,
A. R.
Thornton
,
S.
Luding
,
A. L.
Hazel
, and
T.
Weinhart
, “
Concurrent multi-scale modeling of granular materials: Role of coarse-graining in FEM-DEM coupling
,”
Comput. Methods Appl. Mech. Eng.
403
,
115651
(
2023
).
29.
H.
Cheng
,
S.
Luding
, and
T.
Weinhart
, “
CG-enriched concurrent multi-scale modeling of dynamic surface interactions between discrete particles and solid continua
,”
Acta Mech. Sin.
39
,
722218
(
2023
).
30.
N.
Guo
and
J.
Zhao
, “
A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media
,”
Int. J. Numer. Methods Eng.
99
,
789
(
2014
).
31.
T. K.
Nguyen
,
G.
Combe
,
D.
Caillerie
, and
J.
Desrues
, “
FEM× DEM modelling of cohesive granular materials: Numerical homogenisation and multi-scale simulations
,”
Acta Geophys.
62
,
1109
(
2014
).
32.
C.
Liu
,
Q.
Sun
, and
Y.
Yang
, “
Multi-scale modelling of granular pile collapse by using material point method and discrete element method
,”
Procedia Eng.
175
,
29
(
2017
).
33.
W.
Liang
and
J.
Zhao
, “
Multiscale modeling of large deformation in geomechanics
,”
Int. J. Numer. Anal. Methods Geomech.
43
,
1080
(
2019
).
34.
C.
Liu
,
Q.
Sun
, and
G. G.
Zhou
, “
Coupling of material point method and discrete element method for granular flows impacting simulations
,”
Int. J. Numer. Methods Eng.
115
,
172
(
2018
).
35.
X.
Li
and
K.
Wan
, “
A bridging scale method for granular materials with discrete particle assembly–Cosserat continuum modeling
,”
Comput. Geotech.
38
,
1052
(
2011
).
36.
M.
Nitka
,
G.
Combe
,
C.
Dascalu
, and
J.
Desrues
, “
Two-scale modeling of granular materials: A DEM-FEM approach
,”
Granular Matter
13
,
277
(
2011
).
37.
H.
Xiong
,
Z. Y.
Yin
, and
F.
Nicot
, “
A multiscale work‐analysis approach for geotechnical structures
,”
Int. J. Numer. Anal. Methods Geomech.
43
,
1230
(
2019
).
38.
J.
Desrues
,
A.
Argilaga
,
D.
Caillerie
,
G.
Combe
,
T. K.
Nguyen
,
V.
Richefeu
, and
S.
Dal Pont
, “
From discrete to continuum modelling of boundary value problems in geomechanics: An integrated FEM‐DEM approach
,”
Int. J. Numer. Anal. Methods Geomech.
43
,
919
(
2019
).
39.
S.
Zhao
,
J.
Zhao
, and
Y.
Lai
, “
Multiscale modeling of thermo-mechanical responses of granular materials: A hierarchical continuum–discrete coupling approach
,”
Comput. Methods Appl. Mech. Eng.
367
,
113100
(
2020
).
40.
T.
Qu
,
Y.
Feng
, and
M.
Wang
, “
An adaptive granular representative volume element model with an evolutionary periodic boundary for hierarchical multiscale analysis
,”
Int. J. Numer. Methods Eng.
122
,
2239
(
2021
).
41.
G.
Shahin
,
J.
Desrues
,
S. D.
Pont
,
G.
Combe
, and
A.
Argilaga
, “
A study of the influence of REV variability in double‐scale FEM× DEM analysis
,”
Int. J. Numer. Methods Eng.
107
,
882
(
2016
).
42.
N.
Guo
and
J.
Zhao
,
A Hierarchical Model for Cross-Scale Simulation of Granular Media
(
American Institute of Physics
,
2013
).
43.
Y.
Zhang
,
Q.
Chang
, and
W.
Ge
, “
Coupling DPM with DNS for dynamic interphase force evaluation
,”
Chem. Eng. Sci.
231
,
116238
(
2021
).
44.
W.
Ge
,
L.
Wang
,
J.
Xu
,
F.
Chen
,
G.
Zhou
,
L.
Lu
,
Q.
Chang
, and
J.
Li
, “
Discrete simulation of granular and particle-fluid flows: From fundamental study to engineering application
,”
Rev. Chem. Eng.
33
,
551
(
2017
).
45.
R.
Tuley
,
M.
Danby
,
J.
Shrimpton
, and
M.
Palmer
, “
On the optimal numerical time integration for Lagrangian DEM within implicit flow solvers
,”
Comput. Chem. Eng.
34
,
886
(
2010
).
46.
J.
Huang
,
A.
De Leebeeck
, and
O. J.
Nydal
, “
DEM simulation of particulate flow using multi-scale time steps
,”
Int. J. Comput. Methods
09
,
1240010
(
2012
).
47.
S.
Koshizuka
and
Y.
Oka
, “
Moving-particle semi-implicit method for fragmentation of incompressible fluid
,”
Nucl. Sci. Eng.
123
,
421
(
1996
).
48.
K.
Shibata
,
S.
Koshizuka
,
M.
Sakai
, and
K.
Tanizawa
, “
Lagrangian simulations of ship-wave interactions in rough seas
,”
Ocean Eng.
42
,
13
(
2012
).
49.
H.
Gotoh
,
H.
Ikari
,
T.
Memita
, and
T.
Sakai
, “
Lagrangian particle method for simulation of wave overtopping on a vertical seawall
,”
Coastal Eng. J.
47
,
157
(
2005
).
50.
T.
Xu
and
Y.-C.
Jin
, “
Modeling free-surface flows of granular column collapses using a mesh-free method
,”
Powder Technol.
291
,
20
(
2016
).
51.
O.
Rufai
,
Y.-C.
Jin
, and
Y.-C.
Tai
, “
Rheometry of dense granular collapse on inclined planes
,”
Granular Matter
21
,
62
(
2019
).
52.
B.-H.
Lee
,
J.-C.
Park
,
M.-H.
Kim
, and
S.-C.
Hwang
, “
Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads
,”
Comput. Methods Appl. Mech. Eng.
200
,
1113
(
2011
).
53.
S.
Koshizuka
,
K.
Shibata
,
M.
Kondo
, and
T.
Matsunaga
,
Moving Particle Semi-Implicit Method: A Meshfree Particle Method for Fluid Dynamics
(
Academic Press
,
2018
).
54.
G.
Duan
,
S.
Koshizuka
,
A.
Yamaji
,
B.
Chen
,
X.
Li
, and
T.
Tamai
, “
An accurate and stable multiphase moving particle semi‐implicit method based on a corrective matrix for all particle interaction models
,”
Int. J. Numer. Methods Eng.
115
,
1287
(
2018
).
55.
A.
Khayyer
and
H.
Gotoh
, “
Modified moving particle semi-implicit methods for the prediction of 2D wave impact pressure
,”
Coastal Eng.
56
,
419
(
2009
).
56.
M.
Tanaka
and
T.
Masunaga
, “
Stabilization and smoothing of pressure in MPS method by quasi-compressibility
,”
J. Comput. Phys.
229
,
4279
(
2010
).
57.
X.
Wen
,
W.
Zhao
, and
D.
Wan
, “
An improved moving particle semi-implicit method for interfacial flows
,”
Appl. Ocean Res.
117
,
102963
(
2021
).
58.
K.
Shibata
,
I.
Masaie
,
M.
Kondo
,
K.
Murotani
, and
S.
Koshizuka
, “
Improved pressure calculation for the moving particle semi-implicit method
,”
Comp. Part. Mech.
2
,
91
(
2015
).
59.
X.
Chen
,
G.
Xi
, and
Z.-G.
Sun
, “
Improving stability of MPS method by a computational scheme based on conceptual particles
,”
Comput. Methods Appl. Mech. Eng.
278
,
254
(
2014
).
60.
G.
Guennebaud
,
B.
Jacob
, et al, see http://eigen.tuxfamily.org/ for “
Eigen3
,” (
2012
).
61.
S. J.
Lind
,
R.
Xu
,
P. K.
Stansby
, and
B. D.
Rogers
, “
Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves
,”
J. Comput. Phys.
231
,
1499
(
2012
).
62.
R.
Xu
,
P.
Stansby
, and
D.
Laurence
, “
Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach
,”
J. Comput. Phys.
228
,
6703
(
2009
).
63.
P.
Jop
,
Y.
Forterre
, and
O.
Pouliquen
, “
Crucial role of sidewalls in granular surface flows: Consequences for the rheology
,”
J. Fluid Mech.
541
,
167
(
2005
).
64.
O.
Pouliquen
and
Y.
Forterre
, “
A non-local rheology for dense granular flows
,”
Philos. Trans. R. Soc., A
367
,
5091
(
2009
).
65.
P.
Jop
,
Y.
Forterre
, and
O.
Pouliquen
, “
A constitutive law for dense granular flows
,”
Nature
441
,
727
(
2006
).
66.
H.
Hertz
, “
Ueber die Berührung fester elastischer Körper
,”
J. Reine Angew. Math.
92
,
156
(
1882
).
67.
R. D.
Mindlin
and
H.
Deresiewicz
, “
Elastic spheres in contact under varying oblique forces
,”
J. Appl. Mech.
20
,
327
344
(
1953
).
68.
C.
Kloss
,
C.
Goniva
,
A.
Hager
,
S.
Amberger
, and
S.
Pirker
, “
Models, algorithms and validation for opensource DEM and CFD–DEM
,”
Prog. Comput. Fluid Dyn.
12
,
140
(
2012
).
69.
S.
Zhang
,
M.
Zhao
,
W.
Ge
, and
C.
Liu
, “
Bimodal frequency distribution of granular discharge in 2D hoppers
,”
Chem. Eng. Sci.
245
,
116945
(
2021
).
70.
S.
Zhang
,
W.
Ge
,
G.
Chen
,
Z.
Liu
,
T.
Liu
,
L.
Wen
, and
C.
Liu
, “
Numerical investigation on the clogging-collapsing events in granular discharge
,”
Powder Technol.
408
,
117714
(
2022
).
71.
Y.
Tsuji
,
T.
Kawaguchi
, and
T.
Tanaka
, “
Discrete particle simulation of two-dimensional fluidized bed
,”
Powder Technol.
77
,
79
(
1993
).
72.
A.
Khayyer
,
Y.
Shimizu
,
H.
Gotoh
, and
S.
Hattori
, “
Multi-resolution ISPH-SPH for accurate and efficient simulation of hydroelastic fluid-structure interactions in ocean engineering
,”
Ocean Eng.
226
,
108652
(
2021
).
73.
X.
Chen
,
Z. G.
Sun
,
L.
Liu
, and
G.
Xi
, “
Improved MPS method with variable‐size particles
,”
Int. J. Numer. Methods Fluids
80
,
358
(
2016
).
74.
K.
Shibata
,
S.
Koshizuka
,
T.
Matsunaga
, and
I.
Masaie
, “
The overlapping particle technique for multi-resolution simulation of particle methods
,”
Comput. Methods Appl. Mech. Eng.
325
,
434
(
2017
).
75.
P. M. C.
Lacey
, “
Developments in the theory of particle mixing
,”
J. Appl. Chem.
4
,
257
(
2007
).
76.
M.
Sakai
,
Y.
Shigeto
,
G.
Basinskas
,
A.
Hosokawa
, and
M.
Fuji
, “
Discrete element simulation for the evaluation of solid mixing in an industrial blender
,”
Chem. Eng. J.
279
,
821
(
2015
).
77.
W. A.
Beverloo
,
H. A.
Leniger
, and
J.
Van de Velde
, “
The flow of granular solids through orifices
,”
Chem. Eng. Sci.
15
,
260
(
1961
).
78.
L.
Dagum
and
R.
Menon
, “
OpenMP: An industry standard API for shared-memory programming
,”
IEEE Comput. Sci. Eng.
5
,
46
(
1998
).
79.
D.
Guide
,
CUDA C Programming Guide
(
NVIDIA
, July 29,
2013
), p.
31
.
80.
W.
Gropp
,
E.
Lusk
,
N.
Doss
, and
A.
Skjellum
, “
A high-performance, portable implementation of the MPI message passing interface standard
,”
Parallel Comput.
22
,
789
(
1996
).
81.
J.
Xu
,
H.
Qi
,
X.
Fang
,
L.
Lu
,
W.
Ge
,
X.
Wang
,
M.
Xu
,
F.
Chen
,
X.
He
, and
J.
Li
, “
Quasi-real-time simulation of rotating drum using discrete element method with parallel GPU computing
,”
Particuology
9
,
446
(
2011
).
82.
Y.
Shigeto
and
M.
Sakai
, “
Parallel computing of discrete element method on multi-core processors
,”
Particuology
9
,
398
(
2011
).
83.
D. T.
Fernandes
,
L.-Y.
Cheng
,
E. H.
Favero
, and
K.
Nishimoto
, “
A domain decomposition strategy for hybrid parallelization of moving particle semi-implicit (MPS) method for computer cluster
,”
Cluster Comput.
18
,
1363
(
2015
).
84.
C.
Hori
,
H.
Gotoh
,
H.
Ikari
, and
A.
Khayyer
, “
GPU-acceleration for moving particle semi-implicit method
,”
Comput. Fluids
51
,
174
(
2011
).
85.
W.
Gou
,
S.
Zhang
, and
Y.
Zheng
, “
Implementation of the moving particle semi-implicit method for free-surface flows on GPU clusters
,”
Comput. Phys. Commun.
244
,
13
(
2019
).
You do not currently have access to this content.