Interfacially localizing particles in co-continuous polymer blends requires a complex interplay between the properties of polymers, such as interfacial tension between them, Γ, viscosity, η, viscosity ratio between them, and particle properties, such as particle size and particle surface chemistry. Here, we investigate the formation and coarsening dynamics of four co-continuous blend composites based on polypropylene, PP (or linear low-density polyethylene), and poly(ethylene-co-vinyl acetate), EVA filled with pristine silica of two sizes (140 and 250 nm). By choosing polymer blend components with different viscosities and interfacial tensions and particles with varying size and size distributions, we were able to elucidate their relative contributions in the stabilization of co-continuous polymer microstructures. By utilizing confocal rheology, we show that the evolution of storage modulus during coarsening of polymer blend composites is primarily dependent on the strength of the initial interfacial particle network. Our findings indicate that the initial domain size and kinetic control of interfacial particle localization in co-continuous polymer blends are determined by the Γ/η ratio of the neat blend. However, this relationship does not hold in low viscosity systems. When polymer blend viscosity is lower, it reduces the kinetic barrier at the interface, leading to a higher proportion of particles localizing in the favorable EVA phase. We also find that the smaller particles have a higher propensity for interfacial localization. These findings provide insight into the success of kinetic particle trapping at the interface of co-continuous blends and the resulting composite properties based on the choice of component properties.

1.
R.
Willemse
,
A.
Speijer
,
A.
Langeraar
, and
A.
Posthuma de Boer
, “
Tensile moduli of co-continuous polymer blends
,”
Polymer
40
,
6645
(
1999
).
2.
R. S.
Shah
,
S.
Bryant
, and
M.
Trifkovic
, “
Microstructural rearrangements and their rheological signature in coarsening of cocontinuous polymer blends
,”
Macromolecules
53
,
10918
(
2020
).
3.
C. R.
López-Barrón
and
C. W.
Macosko
, “
Rheological and morphological study of cocontinuous polymer blends during coarsening
,”
J. Rheol.
56
,
1315
(
2012
).
4.
H.
Veenstra
,
P. C.
Verkooijen
,
B. J.
van Lent
,
J.
van Dam
,
A. P.
de Boer
, and
A. P. H.
Nijhof
, “
On the mechanical properties of co-continuous polymer blends: Experimental and modelling
,”
Polymer
41
,
1817
(
2000
).
5.
D.
Quintens
,
G.
Groeninckx
,
M.
Guest
, and
L.
Aerts
, “
Mechanical behavior related to the phase morphology of PC/SAN polymer blends
,”
Polym. Eng. Sci.
30
,
1474
(
1990
).
6.
Z.
Yuan
and
B. D.
Favis
, “
Coarsening of immiscible co-continuous blends during quiescent annealing
,”
AIChE J.
51
,
271
(
2005
).
7.
A. Y.
Malkin
and
I. V.
Gumennyi
, “
Flow of polymer blends—Developing a deformation-induced morphology followed by analytical scanning electron microscopy
,”
Phys. Fluids
34
,
123105
(
2022
).
8.
P.
Pötschke
and
D. R.
Paul
, “
Formation of co-continuous structures in melt-mixed immiscible polymer blends
,”
J. Macromol. Sci., Part C
43
,
87
(
2003
).
9.
C.-L.
Zhang
,
L.-F.
Feng
,
J.
Zhao
,
H.
Huang
,
S.
Hoppe
, and
G.-H.
Hu
, “
Efficiency of graft copolymers at stabilizing co-continuous polymer blends during quiescent annealing
,”
Polymer
49
,
3462
(
2008
).
10.
G. P.
Kar
,
S.
Biswas
, and
S.
Bose
, “
X-ray micro computed tomography, segmental relaxation and crystallization kinetics in interfacial stabilized co-continuous immiscible PVDF/ABS blends
,”
Polymer
101
,
291
(
2016
).
11.
L.
Bai
,
J. W.
Fruehwirth
,
X.
Cheng
, and
C. W.
Macosko
, “
Dynamics and rheology of nonpolar bijels
,”
Soft Matter
11
,
5282
(
2015
).
12.
X.-Q.
Liu
,
R.-H.
Li
,
R.-Y.
Bao
,
W.-R.
Jiang
,
W.
Yang
,
B.-H.
Xie
,
M.-B.
Yang
,
W.
Yang
,
B.-H.
Xie
, and
M.-B.
Yang
, “
Suppression of phase coarsening in immiscible, co-continuous polymer blends under high temperature quiescent annealing
,”
Soft Matter
10
,
3587
(
2014
).
13.
S.
Doagou-Rad
,
A.
Islam
, and
T. D.
Merca
, “
An application‐oriented roadmap to select polymeric nanocomposites for advanced applications: A review
,”
Polym. Compos.
41
,
1153
(
2020
).
14.
Y.
Kou
,
A. T.
Cote
,
J.
Liu
,
X.
Cheng
, and
C. W.
Macosko
, “
Robust networks of interfacial localized graphene in cocontinuous polymer blends
,”
J. Rheol.
65
,
1139
(
2021
).
15.
Y.
Bian
and
Y.
Li
, “
Porous conductive elastomeric composites with carbon nanotubes suspended in the narrow pores from co-continuous polymer blend nanocomposites
,”
Compos. Sci. Technol.
218
,
109116
(
2022
).
16.
M.
Liebscher
,
J.
Domurath
,
B.
Krause
,
M.
Saphiannikova
,
G.
Heinrich
, and
P.
Pötschke
, “
Electrical and melt rheological characterization of PC and co-continuous PC/SAN blends filled with CNTs: Relationship between melt-mixing parameters, filler dispersion, and filler aspect ratio
,”
J. Polym. Sci., Part B
56
,
79
(
2018
).
17.
R.
Bo
,
J.
Wang
,
C.
Wang
,
Y.
Wang
,
P.
He
, and
Z.
Han
, “
Selective distribution of BaTiO3 and graphene in PS/PVDF blends: Molecular dynamics simulations
,”
Mater. Today Commun.
34
,
105247
(
2023
).
18.
S. J.
Gross
,
M.-T.
Hsieh
,
D. R.
Mumm
,
L.
Valdevit
, and
A.
Mohraz
, “
Alleviating expansion-induced mechanical degradation in lithium-ion battery silicon anodes via morphological design
,”
Extreme Mech. Lett.
54
,
101746
(
2022
).
19.
S. K.
Ghosh
,
T. K.
Das
,
S.
Ganguly
,
S.
Paul
,
K.
Nath
,
A.
Katheria
,
T.
Ghosh
,
S.
Nath Chowdhury
, and
N. C.
Das
, “
Carbon nanotubes and carbon nanofibers based co-continuous thermoplastic elastomeric blend composites for efficient microwave shielding and thermal management
,”
Composites, Part A
161
,
107118
(
2022
).
20.
T.
Gao
,
S.
Jia
,
J.
Wang
,
Y.
Cai
,
H.
Zhang
,
H.
Jiang
,
Z.-x.
Huang
, and
J.-p.
Qu
, “
Advanced adjustable sensor for multi-signal analysis via construction of co-continuous dual-sensing networks
,”
Compos. Sci. Technol.
230
,
109733
(
2022
).
21.
M.
Sun
,
C.
Chen
,
L.
Chen
, and
B.
Su
, “
Hierarchically porous materials: Synthesis strategies and emerging applications
,”
Front. Chem. Sci. Eng.
10
,
301
(
2016
).
22.
S.
Yoshida
and
M.
Trifkovic
, “
Unraveling the effect of 3D particle localization on coarsening dynamics and rheological properties in cocontinuous polymer blend nanocomposites
,”
Macromolecules
52
,
7678
(
2019
).
23.
X.
Zhang
,
T.
Wada
,
P.
Chammingkwan
,
A.
Thakur
, and
T.
Taniike
, “
Cooperative influences of nanoparticle localization and phase coarsening on thermal conductivity of polypropylene/polyolefin elastomer blends
,”
Composites, Part A
126
,
105602
(
2019
).
24.
D.
Strugova
,
J. C.
Ferreira Junior
,
É.
David
, and
N. R.
Demarquette
, “
Ultra-low percolation threshold induced by thermal treatments in co-continuous blend-based PP/PS/MWCNTs nanocomposites
,”
Nanomaterials
11
,
1620
(
2021
).
25.
L.
Bai
,
S.
He
,
J. W.
Fruehwirth
,
A.
Stein
,
C. W.
Macosko
, and
X.
Cheng
, “
Localizing graphene at the interface of cocontinuous polymer blends: Morphology, rheology, and conductivity of cocontinuous conductive polymer composites
,”
J. Rheol.
61
,
575
(
2017
).
26.
L.
Bai
,
R.
Sharma
,
X.
Cheng
, and
C. W.
Macosko
, “
Kinetic control of graphene localization in co-continuous polymer blends via melt compounding
,”
Langmuir
34
,
1073
(
2018
).
27.
J.-R.
Tao
,
D.
Yang
,
Y.
Yang
,
Q.-M.
He
,
B.
Fei
, and
M.
Wang
, “
Migration mechanism of carbon nanotubes and matching viscosity-dependent morphology in co-continuous poly(lactic acid)/poly(ε-caprolactone) blend: Towards electromagnetic shielding enhancement
,”
Polymer
252
,
124963
(
2022
).
28.
M.
Cao
,
M.
Sun
,
Z.
Zhang
,
R.
Xia
,
P.
Chen
,
B.
Wu
,
J.
Miao
,
B.
Yang
, and
J.
Qian
, “
Effect of the blending processes on selective localization and thermal conductivity of BN in PP/EPDM co-continuous blends
,”
Polym. Test.
78
,
105978
(
2019
).
29.
A.
Taguet
,
B.
Otazaghine
, and
M.
Batistella
, “
Kinetic and thermodynamic parameters guiding the localization of regioselectively modified kaolin platelets into a PS/PA6 co-continuous blend
,”
Polymer
191
,
122277
(
2020
).
30.
X.
Jing
,
Y.
Li
,
J.
Zhu
,
L.
Chang
,
S.
Maganti
,
N.
Naik
,
B. B.
Xu
,
V.
Murugadoss
,
M.
Huang
, and
Z.
Guo
, “
Improving thermal conductivity of polyethylene/polypropylene by styrene-ethylene-propylene-styrene wrapping hexagonal boron nitride at the phase interface
,”
Adv. Compos. Hybrid Mater.
5
,
1090
(
2022
).
31.
N. P.
Cheremisinoff
,
Elastomer Technology Handbook
(
CRC Press
,
2020
).
32.
L.-C.
Jheng
,
J.
Park
,
H.
Wook Yoon
, and
F.-C.
Chang
, “
Mixed matrix membranes comprising 6FDA-based polyimide blends and UiO-66 with co-continuous structures for gas separations
,”
Sep. Purif. Technol.
310
,
123126
(
2023
).
33.
H.
Qiao
,
B.
Zheng
,
G.
Zhong
,
Z.
Li
,
R.
Cardinaels
,
P.
Moldenaers
,
K.
Lamnawar
,
A.
Maazouz
,
C.
Liu
, and
H.
Zhang
, “
Understanding the rheology of polymer–polymer interfaces covered with Janus nanoparticles: Polymer blends versus particle sandwiched multilayers
,”
Macromolecules
56
,
647
(
2023
).
34.
Y.
Liu
,
H.
He
,
G.
Tian
,
Y.
Wang
,
J.
Gao
,
C.
Wang
,
L.
Xu
, and
H.
Zhang
, “
Morphology evolution to form double percolation polylactide/polycaprolactone/MWCNTs nanocomposites with ultralow percolation threshold and excellent EMI shielding
,”
Compos. Sci. Technol.
214
,
108956
(
2021
).
35.
H.
Gidituri
,
A.
Würger
,
K.
Stratford
, and
J. S.
Lintuvuori
, “
Dynamics of a spherical colloid at a liquid interface: A lattice Boltzmann study
,”
Phys. Fluids
33
,
052110
(
2021
).
36.
Z.
Mao
,
H.
Sun
, and
J.
Zhang
, “
Selective distribution of SrTiO3 in co-continuous composites: An effective method to improve the dielectric and mechanical properties
,”
Composites, Part A
143
,
106312
(
2021
).
37.
A.
Boukheit
,
F.
Chabert
,
B.
Otazaghine
, and
A.
Taguet
, “
h-BN modification using several hydroxylation and grafting methods and their incorporation into a PMMA/PA6 polymer blend
,”
Nanomaterials
12
,
2735
(
2022
).
38.
R.
Salehiyan
and
S. S.
Ray
, “
Tuning the conductivity of nanocomposites through nanoparticle migration and interface crossing in immiscible polymer blends: A review on fundamental understanding
,”
Macromol. Mater. Eng.
304
,
1800431
(
2019
).
39.
E.
Jalali Dil
and
B. D.
Favis
, “
Localization of micro- and nano-silica particles in heterophase poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends
,”
Polymer
76
,
295
(
2015
).
40.
E.
Jalali Dil
and
B. D.
Favis
, “
Localization of micro and nano-silica particles in a high interfacial tension poly(lactic acid)/low density polyethylene system
,”
Polymer
77
,
156
(
2015
).
41.
J.
Feng
,
C. M.
Chan
, and
J. X.
Li
, “
A method to control the dispersion of carbon black in an immiscible polymer blend
,”
Polym. Eng. Sci.
43
,
1058
(
2003
).
42.
P.
Zhou
,
W.
Yu
,
C.
Zhou
,
F.
Liu
,
L.
Hou
, and
J.
Wang
, “
Morphology and electrical properties of carbon black filled LLDPE/EMA composites
,”
J. Appl. Polym. Sci.
103
,
487
(
2007
).
43.
F.
Fenouillot
,
P.
Cassagnau
, and
J. C.
Majesté
, “
Uneven distribution of nanoparticles in immiscible fluids: Morphology development in polymer blends
,”
Polymer
50
,
1333
(
2009
).
44.
J.
Plattier
,
L.
Benyahia
,
M.
Dorget
,
F.
Niepceron
, and
J. F.
Tassin
, “
Viscosity-induced filler localisation in immiscible polymer blends
,”
Polymer
59
,
260
(
2015
).
45.
J.
de Aguiar
,
M.
Decol
,
W. M.
Pachekoski
, and
D.
Becker
, “
Mixing‐sequence controlled selective localization of carbon nanoparticles in PLA/PCL blends
,”
Polym. Eng. Sci.
59
,
323
(
2019
).
46.
X.-Q.
Liu
,
Q.-Y.
Wang
,
R.-Y.
Bao
,
W.
Yang
,
B.-H.
Xie
, and
M.-B.
Yang
, “
Suppressing phase retraction and coalescence of co-continuous polymer blends: Effect of nanoparticles and particle network
,”
RSC Adv.
4
,
49429
(
2014
).
47.
S.
Bose
and
P. A.
Mahanwar
, “
Influence of particle size and particle size distribution on MICA filled nylon 6 composite
,”
J. Mater. Sci.
40
,
6423
(
2005
).
48.
R. S.
Shah
,
S.
Bryant
, and
M.
Trifkovic
, “Particle-size dependent stability of co-continuous polymer blends” (
2023
) (unpublished).
49.
C. R.
Lopez-Barron
and
C. W.
Macosko
, “
Characterizing interface shape evolution in immiscible polymer blends via 3D image analysis
,”
Langmuir
25
,
9392
(
2009
).
50.
A.
Göldel
,
A.
Marmur
,
G. R.
Kasaliwal
,
P.
Pötschke
, and
G.
Heinrich
, “
Shape-dependent localization of carbon nanotubes and carbon black in an immiscible polymer blend during melt mixing
,”
Macromolecules
44
,
6094
(
2011
).

Supplementary Material

You do not currently have access to this content.