Hydrodynamic cavitation is a promising technology for several applications, like disinfection, sludge treatment, biodiesel production, degradation of organic emerging pollutants as pharmaceutical, and dye degradation. Due to local saturation conditions, cavitating liquid exhibits generation, growth, and subsequent collapse of vapor-filled cavities. The cavities' collapse brings very high pressure and temperature; this last aspect is essential in some chemical processes because it induces the decomposition of water molecules into species with a high oxidation potential, which can react with organic substances. Properly exploiting this process requires a highly accurate prediction of pressure peak values. To this purpose, we implemented a multi-phase Eulerian–Lagrangian code to solve the fluid-dynamic problem, coupled with the Rayleigh–Plesset equation, to capture the evolution of bubbles with the required accuracy. The algorithm was validated against experimental data acquired with optical techniques for different cavitation-shedding mechanisms. Then, we used the developed tool to investigate the decoloration of organic substances from a cavitation Venturi tube operating at different pressure. We compared the obtained results with the experimental observation to assess the reliability of the developed code as a predictive tool for cavitation and the possibility of using the code itself to assess scale-up criteria for possible industrial applications.

1.
U.
Gawandalkar
and
C.
Poelma
, “
The structure of near-wall re-entrant flow and its influence on cloud cavitation instability
,”
Exp. Fluids
63
,
77
(
2022
).
2.
R. A.
Furness
and
S. P.
Hutton
, “
Experimental and theoretical studies of two-dimensional fixed-type cavities
,”
J. Fluids Eng.
97
,
515
521
(
1975
).
3.
J. K.
Jakobsen
, “
On the mechanism of head breakdown in cavitating inducers
,”
J. Basic Eng.
86
,
291
305
(
1964
).
4.
C.
Wang
,
B.
Huang
,
G.
Wang
,
M.
Zhang
, and
N.
Ding
, “
Unsteady pressure fluctuation characteristics in the process of breakup and shedding of sheet/cloud cavitation
,”
Int. J. Heat Mass Transfer
114
,
769
785
(
2017
).
5.
B.
Budich
,
S. J.
Schmidt
, and
N. A.
Adams
, “
Numerical simulation and analysis of condensation shocks in cavitating flow
,”
J. Fluid Mech.
838
,
759
813
(
2018
).
6.
K. R.
Laberteaux
and
S. L.
Ceccio
, “
Partial cavity flows. Part 1. Cavities forming on models without spanwise variation
,”
J. Fluid Mech.
431
,
1
41
(
2001
).
7.
V.
Innocenzi
and
M.
Prisciandaro
, “
Technical feasibility of biodiesel production from virgin oil and waste cooking oil: Comparison between traditional and innovative process based on hydrodynamic cavitation
,”
Waste Manage.
122
,
15
25
(
2021
).
8.
A. B.
Pandit
and
J. B.
Joshi
, “
Hydrolysis of fatty oils: Effect of cavitation
,”
Chem. Eng. Sci.
48
,
3440
3442
(
1993
).
9.
V. S.
Moholkar
,
P. S.
Kumar
, and
A. B.
Pandit
, “
Hydrodynamic cavitation for sonochemical effects
,”
Ultrason. Sonochem.
6
,
53
65
(
1999
).
10.
M.
Gągol
,
A.
Przyjazny
, and
G.
Boczkaj
, “
Wastewater treatment by means of advanced oxidation processes based on cavitation—A review
,”
Chem. Eng. J.
338
,
599
627
(
2018
).
11.
Y.
Tao
,
J.
Cai
,
X.
Huai
,
B.
Liu
, and
Z.
Guo
, “
Application of hydrodynamic cavitation to wastewater treatment
,”
Chem. Eng. Technol.
39
,
1363
1376
(
2016
).
12.
V.
Innocenzi
,
M.
Prisciandaro
, and
F.
Vegliò
, “
Effect of the hydrodynamic cavitation for the treatment of industrial wastewater
,”
Chem. Eng. Trans.
67
,
529
534
(
2018
).
13.
P.
Thanekar
and
P.
Gogate
, “
Application of hydrodynamic cavitation reactors for treatment of wastewater containing organic pollutants: Intensification using hybrid approaches
,”
Fluids
3
,
98
(
2018
).
14.
S.
Raut-Jadhav
,
M. P.
Badve
,
D. V.
Pinjari
,
D. R.
Saini
,
S. H.
Sonawane
, and
A.
Pandit
, “
Treatment of the pesticide industry effluent using hydrodynamic cavitation and its combination with process intensifying additives (H2O2 and ozone)
,”
Chem. Eng. J.
295
,
326
335
(
2016
).
15.
S.
Raut-Jadhav
,
D.
Saini
,
S.
Sonawane
, and
A.
Pandit
, “
Effect of process intensifying parameters on the hydrodynamic cavitation based degradation of commercial pesticide (methomyl) in the aqueous solution
,”
Ultrason. Sonochem.
28
,
283
293
(
2016
).
16.
R. K.
Joshi
and
P. R.
Gogate
, “
Degradation of dichlorvos using hydrodynamic cavitation based treatment strategies
,”
Ultrason. Sonochem.
19
,
532
539
(
2012
).
17.
B.
Li
,
S.
Li
,
L.
Yi
,
H.
Sun
,
J.
Qin
,
J.
Wang
, and
D.
Fang
, “
Degradation of organophosphorus pesticide diazinon by hydrodynamic cavitation: Parameters optimization and mechanism investigation
,”
Process Saf. Environ. Prot.
153
,
257
267
(
2021
).
18.
D.
Panda
and
S.
Manickam
, “
Hydrodynamic cavitation assisted degradation of persistent endocrine-disrupting organochlorine pesticide dicofol: Optimization of operating parameters and investigations on the mechanism of intensification
,”
Ultrason. Sonochem.
51
,
526
532
(
2019
).
19.
M.
Zupanc
,
T.
Kosjek
,
M.
Petkovšek
,
M.
Dular
,
B.
Kompare
,
B.
Širok
,
M.
Strazar
, and
E.
Heath
, “
Shear-induced hydrodynamic cavitation as a tool for pharmaceutical micropollutants removal from urban wastewater
,”
Ultrason. Sonochem.
21
,
1213
1221
(
2014
).
20.
M.
Capocelli
,
M.
Prisciandaro
,
A.
Lancia
, and
D.
Musmarra
, “
Hydrodynamic cavitation of p-nitrophenol: A theoretical and experimental insight
,”
Chem. Eng. J.
254
,
1
8
(
2014
).
21.
D.
Musmarra
,
M.
Prisciandaro
,
M.
Capocelli
,
D.
Karatza
,
P.
Iovino
,
S.
Canzano
, and
A.
Lancia
, “
Degradation of ibuprofen by hydrodynamic cavitation: Reaction pathways and effect of operational parameters
,”
Ultrason. Sonochem.
29
,
76
83
(
2016
).
22.
M.
Capocelli
,
D.
Musmarra
,
M.
Prisciandaro
, and
A.
Lancia
, “
Chemical effect of hydrodynamic cavitation: Simulation and experimental comparison
,”
AIChE J.
60
,
2566
2572
(
2014
).
23.
J.
Lalwani
,
A.
Gupta
,
S.
Thatikonda
, and
C.
Subrahmanyam
, “
Oxidative treatment of crude pharmaceutical industry effluent by hydrodynamic cavitation
,”
J. Environ. Chem. Eng.
8
,
104281
(
2020
).
24.
M. V.
Bagal
and
P. R.
Gogate
, “
Degradation of diclofenac sodium using combined processes based on hydrodynamic cavitation and heterogeneous photocatalysis
,”
Ultrason. Sonochem.
21
(
3
),
1035
1043
(
2014
).
25.
G.
Mancuso
,
M.
Langone
,
G.
Andreottola
, and
L.
Bruni
, “
Effects of hydrodynamic cavitation, low-level thermal and low-level alkaline pre-treatments on sludge solubilisation
,”
Ultrason. Sonochem.
59
,
104750
(
2019
).
26.
Š.
Zezulka
,
E.
Maršálková
,
F.
Pochylý
,
P.
Rudolf
,
M.
Hudec
, and
B.
Maršálek
, “
High-pressure jet-induced hydrodynamic cavitation as a pre-treatment step for avoiding cyanobacterial contamination during water purification
,”
J. Environ. Manage.
255
,
109862
(
2020
).
27.
K. K.
Jyoti
and
A. B.
Pandit
, “
Water disinfection by acoustic and hydrodynamic cavitation
,”
Biochem. Eng. J.
7
,
201
212
(
2001
).
28.
V. K.
Saharan
,
M. P.
Badve
, and
A. B.
Pandit
, “
Degradation of reactive red 120 dye using hydrodynamic cavitation
,”
Chem. Eng. J.
178
,
100
107
(
2011
).
29.
S.
Baradaran
and
M. T.
Sadeghi
, “
Coomassie brilliant blue (CBB) degradation using hydrodynamic cavitation hydrogen peroxide and activated persulfate (HC-H2O2-KPS) combined process
,”
Chem. Eng. Process.-Process Intensif.
145
(
145
),
107674
(
2019
).
30.
Z.
Askarniya
,
M.-T.
Sadeghi
, and
S.
Baradaran
, “
Decolorization of congo red via hydrodynamic cavitation in combination with fenton's reagent
,”
Chem. Eng. Process.-Process Intensif.
150
,
107874
(
2020
).
31.
M. M.
Gore
,
V. K.
Saharan
,
D. V.
Pinjari
,
P. V.
Chavan
, and
A.
Pandit
, “
Degradation of reactive orange dye using hydrodynamic cavitation based hybrid techniques
,”
Ultrason. Sonochem.
21
(
4
),
1075
1082
(
2014
).
32.
B.
Wang
,
T.
Wang
, and
H.
Su
, “
A dye-methylene blue (MB)-degraded by hydrodynamic cavitation (HC) and combined with other oxidants
,”
J. Environ. Chem. Eng.
10
,
107877
(
2022
).
33.
M. S.
Kumar
,
S. H.
Sonawane
, and
A.
Pandit
, “
Degradation of methylene blue dye in aqueous solution using hydrodynamic cavitation based hybrid advanced oxidation processes
,”
Chem. Eng. Process.: Process Intensif.
122
,
288
295
(
2017
).
34.
J. P.
Guin
,
Y. K.
Bhardwaj
, and
L.
Varshney
, “
Mineralization and biodegradability enhancement of methyl orange dye by an effective advanced oxidation process
,”
Appl. Radiat. Isot.
122
,
153
157
(
2017
).
35.
V.
Innocenzi
,
M.
Prisciandaro
, and
F.
Vegliò
, “
Study of the effect of operative conditions on the decolourization of azo dye solutions by using hydrodynamic cavitation at the lab scale
,”
Can. J. Chem. Eng.
98
,
1980
1988
(
2020
).
36.
V.
Innocenzi
,
M.
Prisciandaro
,
F.
Tortora
, and
F.
Vegliò
, “
Optimization of hydrodynamic cavitation process of azo dye reduction in the presence of metal ions
,”
J. Environ. Chem. Eng.
6
,
6787
6796
(
2018
).
37.
V.
Innocenzi
,
M.
Prisciandaro
,
M.
Centofanti
, and
F.
Vegliò
, “
Comparison of performances of hydrodynamic cavitation in combined treatments based on hybrid induced advanced fenton process for degradation of azo-dyes
,”
J. Environ. Chem. Eng.
7
,
103171
(
2019
).
38.
Z.
Abbas-Shiroodi
,
M.-T.
Sadeghi
, and
S.
Baradaran
, “
Design and optimization of a cavitating device for congo red decolorization: Experimental investigation and CFD simulation
,”
Ultrason. Sonochem.
71
,
105386
(
2021
).
39.
Y. L.
Pang
,
A. Z.
Abdullah
, and
S.
Bhatia
, “
Review on sonochemical methods in the presence of catalysts and chemical additives for treatment of organic pollutants in wastewater
,”
Desalination
277
,
1
14
(
2011
).
40.
J.
Luo
,
X.
Zhou
,
L.
Ma
,
X.
Xu
,
J.
Wu
, and
H.
Liang
, “
Enhanced photodegradation activity of methyl orange over Ag2CrO4/SnS2 composites under visible light irradiation
,”
Mater. Res. Bull.
77
,
291
299
(
2016
).
41.
I. M. S.
Pillai
and
A. K.
Gupta
, “
Effect of inorganic anions and oxidizing agents on electrochemical oxidation of methyl orange, malachite green and 2,4-dinitrophenol
,”
J. Electroanal. Chem.
762
,
66
72
(
2016
).
42.
R.
Mohammadi
and
M.
Mohammadi
, “
Photocatalytic removal of methyl orange using Ag/Zn–TiO2 nanoparticles prepared by different methods
,”
Desalin. Water Treat.
57
,
11317
11325
(
2016
).
43.
M.
Hassanpour
,
H.
Safardoust
,
D.
Ghanbari
, and
M.
Salavati-Niasari
, “
Microwave synthesis of CuO/NiO magnetic nanocomposites and its application in photo-degradation of methyl orange
,”
J. Mater. Sci.: Mater. Electron.
27
,
2718
2727
(
2016
).
44.
S.
Yang
,
R.
Jin
,
Z.
He
,
Y.
Qiao
,
S.
Shi
,
W.
Kong
,
Y.
Wang
, and
X.
Liu
, “
An experimental study on the degradation of methyl orange by combining hydrodynamic cavitation and chlorine dioxide treatments
,”
Chem. Eng. Trans.
59
,
289
294
(
2017
).
45.
S.
Das
,
A. P.
Bhat
, and
P. R.
Gogate
, “
Degradation of dyes using hydrodynamic cavitation: Process overview and cost estimation
,”
J. Water Process Eng.
42
,
102126
(
2021
).
46.
B.
Wang
,
H.
Su
, and
B.
Zhang
, “
Hydrodynamic cavitation as a promising route for wastewater treatment—A review
,”
Chem. Eng. J.
412
,
128685
(
2021
).
47.
V.
Innocenzi
,
A.
Colangeli
, and
M.
Prisciandaro
, “
Methyl orange decolourization through hydrodynamic cavitation in high salinity solutions
,”
Chem. Eng. Process.-Process Intensif.
179
,
109050
(
2022
).
48.
C. E.
Brennen
,
Cavitation and Bubble Dynamics
(
Cambridge University Press
,
2013
).
49.
S.
Yang
and
C.
Habchi
, “
Real-fluid phase transition in cavitation modeling considering dissolved non-condensable gas
,”
Phys. Fluids
32
,
032102
(
2020
).
50.
F.
Giussani
,
F.
Piscaglia
,
G.
Saez-Mischlich
, and
J.
Hèlie
, “
A three-phase VOF solver for the simulation of in-nozzle cavitation effects on liquid atomization
,”
J. Comput. Phys.
406
,
109068
(
2020
).
51.
Y.
Chen
,
X.
Chen
,
J.
Li
,
Z.
Gong
, and
C.
Lu
, “
Large eddy simulation and investigation on the flow structure of the cascading cavitation shedding regime around 3D twisted hydrofoil
,”
Ocean Eng.
129
,
1
19
(
2017
).
52.
M.
Gavaises
,
F.
Villa
,
P.
Koukouvinis
,
M.
Marengo
, and
J.-P.
Franc
, “
Visualisation and LES simulation of cavitation cloud formation and collapse in an axisymmetric geometry
,”
Int. J. Multiphase Flow
68
,
14
26
(
2015
).
53.
H.
Liu
,
W.
Zhang
,
M.
Jia
,
Y.
Yan
, and
Y.
He
, “
An improved method for coupling the in-nozzle cavitation with multi-fluid-quasi-VOF model for diesel spray
,”
Comput. Fluids
177
,
20
32
(
2018
).
54.
W.
Yuan
and
G. H.
Schnerr
, “
Numerical simulation of two-phase flow in injection nozzles: Interaction of cavitation and external jet formation
,”
J. Fluids Eng.
125
,
963
969
(
2003
).
55.
R. E.
Bensow
and
G.
Bark
, “
Implicit LES predictions of the cavitating flow on a propeller
,”
J. Fluids Eng.
132
,
041302
(
2010
).
56.
M. S.
Mihatsch
,
S. J.
Schmidt
, and
N. A.
Adams
, “
Cavitation erosion prediction based on analysis of flow dynamics and impact load spectra
,”
Phys. Fluids
27
,
103302
(
2015
).
57.
M.
Cristofaro
,
W.
Edelbauer
,
P.
Koukouvinis
, and
M.
Gavaises
, “
A numerical study on the effect of cavitation erosion in a diesel injector
,”
Appl. Math. Modell.
78
,
200
216
(
2020
).
58.
A.
Žnidarčič
,
R.
Mettin
, and
M.
Dular
, “
Modeling cavitation in a rapidly changing pressure field—Application to a small ultrasonic horn
,”
Ultrason. Sonochem.
22
,
482
492
(
2015
).
59.
P.
Koukouvinis
,
H.
Naseri
, and
M.
Gavaises
, “
Performance of turbulence and cavitation models in prediction of incipient and developed cavitation
,”
Int. J. Engine Res.
18
,
333
350
(
2017
).
60.
N.
Kyriazis
,
P.
Koukouvinis
, and
M.
Gavaises
, “
Modelling cavitation during drop impact on solid surfaces
,”
Adv. Colloid Interface Sci.
260
,
46
64
(
2018
).
61.
J.
Sauer
and
G. H.
Schnerr
, “
Development of a new cavitation model based on bubble dynamics
,”
J. Appl. Math. Mech. /Z. Angew. Math. Mech.
81
,
561
562
(
2001
).
62.
W.
Yuan
,
J.
Sauer
, and
G. H.
Schnerr
, “
Modeling and computation of unsteady cavitation flows in injection nozzles
,”
Méc. Ind.
2
,
383
394
(
2001
).
63.
See https://asmedigitalcollection.asme.org/FEDSM/proceedings-pdf/FEDSM2007/42894/465/2669848/465_1.pdf for Modelling Injector Flow Including Cavitation Effects for Diesel Applications, Fluids Engineering Division Summer Meeting, Vol. 2: Fora, Parts A and B (
2007
).
64.
M.
Battistoni
,
D.
Duke
,
A. B.
Swantek
,
F. Z.
Tilocco
,
C. F.
Powell
, and
S.
Som
, “
Effects of noncondensable gas on cavitating nozzles
,”
Atomization Sprays
25
,
453
483
(
2015
).
65.
F.
Duronio
,
A.
Di Mascio
,
C.
Villante
,
M.
Anatone
, and
A.
De Vita
, “
ECN spray G: Coupled eulerian internal nozzle flow and Lagrangian spray simulation in flash boiling conditions
,”
Int. J. Engine Res.
24
(
4
),
1530
1544
(
2023
).
66.
J.
Ma
,
C.-T.
Hsiao
, and
G. L.
Chahine
, “
Euler–Lagrange simulations of bubble cloud dynamics near a wall
,”
J. Fluids Eng.
137
,
041301
(
2015
).
67.
E.
Giannadakis
,
M.
Gavaises
, and
C.
Arcoumanis
, “
Modelling of cavitation in diesel injector nozzles
,”
J. Fluid Mech.
616
,
153
193
(
2008
).
68.
W.
Edelbauer
,
J.
Strucl
, and
A.
Morozov
, “
Large eddy simulation of cavitating throttle flow
,” in
Advances in Hydroinformatics
(
Springer-Verlag
,
2016
).
69.
G.
Strotos
,
P.
Koukouvinis
,
A.
Theodorakakos
,
M.
Gavaises
, and
G.
Bergeles
, “
Transient heating effects in high pressure diesel injector nozzles
,”
Int. J. Heat Fluid Flow
51
,
257
267
(
2015
).
70.
C. O.
Iyer
and
S. L.
Ceccio
, “
The influence of developed cavitation on the flow of a turbulent shear layer
,”
Phys. Fluids
14
,
3414
3431
(
2002
).
71.
M.
Dular
and
O.
Coutier-Delgosha
, “
Numerical modelling of cavitation erosion
,”
Int. J. Numer. Methods Fluids
61
,
1388
1410
(
2009
).
72.
O.
Coutier-Delgosha
,
R.
Fortes-Patella
, and
J. L.
Reboud
, “
Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation
,”
J. Fluids Eng.
125
,
38
45
(
2003
).
73.
A.
Morozov
,
J.
Struci
, and
W.
Edelbauer
, “
Large eddy simulation of cavitating throttle flow
,” in Proceedings of the
SimHydro 2014. New Trends in Simulation, 11–13 June 2014
(
Ecole Polytech', Nice
,
France
,
2014
).
74.
M. H.
Arabnejad
,
A.
Amini
,
M.
Farhat
, and
R. E.
Bensow
, “
Numerical and experimental investigation of shedding mechanisms from leading-edge cavitation
,”
Int. J. Multiphase Flow
119
,
123
143
(
2019
).
75.
X.
Long
,
H.
Cheng
,
B.
Ji
,
R. E.
Arndt
, and
X.
Peng
, “
Large eddy simulation and Euler–Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil
,”
Int. J. Multiphase Flow
100
,
41
56
(
2018
).
76.
P. K.
Ullas
,
D.
Chatterjee
, and
S.
Vengadesan
, “
Prediction of unsteady, internal turbulent cavitating flow using dynamic cavitation model
,”
Int. J. Numer. Methods Heat Fluid Flow
32
,
3210
3232
(
2022
).
77.
O.
Usta
and
E.
Korkut
, “
A study for cavitating flow analysis using des model
,”
Ocean Eng.
160
,
397
411
(
2018
).
78.
F.
Orley
,
S.
Hickel
,
S. J.
Schmidt
, and
N. A.
Adams
, “
Large-eddy simulation of turbulent, cavitating fuel flow inside a 9-hole diesel injector including needle movement
,”
Int. J. Engine Res.
18
,
195
211
(
2017
).
79.
J. H.
Ferziger
,
M.
Perić
, and
R. L.
Street
,
Computational Methods for Fluid Dynamics
(
Springer
,
2002
), Vol.
3
.
80.
M.
Darwish
and
F.
Moukalled
,
The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM® and Matlab®
(
Springer
,
2016
).
81.
C. J.
Greenshields
et al, “
Openfoam user guide version 6
,”
OpenFOAM Found.
237
,
624
(
2018
).
82.
P. R.
Spalart
,
S.
Deck
,
M. L.
Shur
,
K. D.
Squires
,
M. K.
Strelets
, and
A.
Travin
, “
A new version of detached-eddy simulation, resistant to ambiguous grid densities
,”
Theor. Comput. Fluid Dyn.
20
,
181
(
2006
).
83.
W.
Hogendoorn
, “
Cavitation: Experimental investigation of cavitation regimes in a coverging-diverging nozzle
,” M.S. thesis [Delft University of Technology (TU Delft),
2017
].
84.
S.
Jahangir
,
W.
Hogendoorn
, and
C.
Poelma
, “
Dynamics of partial cavitation in an axisymmetric converging-diverging nozzle
,”
Int. J. Multiphase Flow
106
,
34
45
(
2018
).
85.
M.
Brunhart
,
C.
Soteriou
,
M.
Gavaises
,
I.
Karathanassis
,
P.
Koukouvinis
,
S.
Jahangir
, and
C.
Poelma
, “
Investigation of cavitation and vapor shedding mechanisms in a venturi nozzle
,”
Phys. Fluids
32
,
083306
(
2020
).
86.
H. K.
Versteeg
and
W.
Malalasekera
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
(
Pearson Education
,
2007
).
87.
F.
Duronio
,
A.
Montanaro
,
L.
Allocca
,
S.
Ranieri
, and
A.
De Vita
, “
Effects of thermodynamic conditions and nozzle geometry on the methane direct injection process in internal combustion engines
,” in
WCX SAE World Congress Experience
(
SAE International
,
2022
).
88.
P. J.
Roache
,
Quantification of Uncertainty in Computational Fluid Dynamics
(
Annual Review of Fluid Mechanics
,
1997
).
89.
F.
Duronio
,
S.
Ranieri
,
A.
Montanaro
,
L.
Allocca
, and
A.
De Vita
, “
ECN spray G injector: Numerical modelling of flash-boiling breakup and spray collapse
,”
Int. J. Multiphase Flow
145
,
103817
(
2021
).
90.
A.
Di Mascio
,
G.
Dubbioso
, and
R.
Muscari
, “
Vortex structures in the wake of a marine propeller operating close to a free surface
,”
J. Fluid Mech.
949
,
A33
(
2022
).
91.
S. B.
Pope
and
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
92.
S.
Jahangir
,
E. C.
Wagner
,
R. F.
Mudde
, and
C.
Poelma
, “
Void fraction measurements in partial cavitation regimes by x-ray computed tomography
,”
Int. J. Multiphase Flow
120
,
103085
(
2019
).
93.
D.
Bauer
,
F.
Barthel
, and
U.
Hampel
, “
High-speed x-ray CT imaging of a strongly cavitating nozzle flow
,”
J. Phys. Commun.
2
,
075009
(
2018
).
94.
C. E.
Reagents
,
see
https://www.carloerbareagents.com/cerstorefront/cer-exp/c/Sodium-hydroxide\%2C-pellets\%2C-98\%25/p/A16037 for “
Sodium hydroxide, pellets, 98%
” (last accessed April 2, 2023).
95.
J.
Ozonek
,
Application of Hydrodynamic Cavitation in Environmental Engineering
(
CRC Press
,
2012
).
96.
S. K.
Pawar
,
A. V.
Mahulkar
,
A. B.
Pandit
,
K.
Roy
, and
V. S.
Moholkar
, “
Sonochemical effect induced by hydrodynamic cavitation: Comparison of venturi/orifice flow geometries
,”
AIChE J.
63
,
4705
4716
(
2017
).
97.
P. H. L.
Alves
,
P.
de
,
S. L.
Silva
,
D. C.
Ferreira
, and
J. C. de S. I.
Gonçalves
, “
COD removal from sucrose solution using hydrodynamic cavitation and hydrogen peroxide: A comparison between Venturi device and orifice plate
,”
Rev. Bras. Recur. Hidricos
24
,
e12
(
2019
).
98.
A.
Mukherjee
,
A.
Mullick
,
R.
Teja
,
P.
Vadthya
,
A.
Roy
, and
S.
Moulik
, “
Performance and energetic analysis of hydrodynamic cavitation and potential integration with existing advanced oxidation processes: A case study for real life greywater treatment
,”
Ultrason. Sonochem.
66
,
105116
(
2020
).
99.
P.
S. Kumar
,
M.
S. Kumar
, and
A.
Pandit
, “
Experimental quantification of chemical effects of hydrodynamic cavitation
,”
Chem. Eng. Sci.
55
,
1633
1639
(
2000
).
You do not currently have access to this content.