The Sakiadis boundary layer induced by a moving wall in a semi-infinite fluid domain is a fundamental laminar flow field relevant to high speed coating processes. This work provides an analytical solution to the boundary-layer problem for Ostwald–de Waele power law fluids via a power series expansion and extends the approach taken for Newtonian fluids [Naghshineh et al. “On the use of asymptotically motivated gauge functions to obtain convergent series solutions to nonlinear ODEs,” IMA J. of Appl. Math. 88, 43 (2023)] in which variable substitutions (which naturally determine the gauge function in the power series) are chosen to be consistent with the large distance behavior away from the wall. Contrary to prior literature, the asymptotic behavior dictates that a solution only exists in the range of power law exponents, α, lying in the range of 0.5 < α 1. An analytical solution is obtained in the range of approximately 0.74 α < 1, using a convergent power series with an asymptotically motivated gauge function. For power laws corresponding to 0.5 < α < 0.74, the gauge function becomes ill-defined over the full domain, and an approximate analytical solution is obtained using the method of asymptotic approximants [Barlow et al. “On the summation of divergent, truncated, and underspecified power series via asymptotic approximants,” Q. J. Mech. Appl. Math. 70, 21–48 (2017)]. The approximant requires knowledge of two physical constants, which we compute a priori using a numerical shooting method on a finite domain. The utility of the power series solution is that it can be solved on the entire semi-infinite domain and—in contrast to a numerical solution—does not require a finite domain length approximation and subsequent domain length refinement.

1.
B. C.
Sakiadis
, “
Boundary-layer behavior on continuous solid surfaces: II. The boundary layer on a continuous flat surface
,”
AlChE J.
7
,
221
225
(
1961
).
2.
S. J.
Weinstein
and
K. J.
Ruschak
, “
Coating flows
,”
Ann. Rev. Fluid Mech.
36
,
29
53
(
2004
).
3.
T. D.
Blake
,
A.
Clarke
, and
K. J.
Ruschak
, “
Hydrodynamic assist of dynamic wetting
,”
AIChE J.
40
,
229
242
(
1994
).
4.
N. V.
Ganesh
,
Q. M.
Al-Mdallal
,
K.
Reena
, and
S.
Aman
, “
Blasius and Sakiadis slip flow of H 2 O C 2 H 6 O 2 (50:50) based nanoliquid with different geometry of boehmite alumina nanoparticles
,”
Case Stud. Therm. Eng.
16
,
100546
(
2019
).
5.
I.
Azhar
and
A.
Tasawar
, “
A study on heat transfer enhancement of copper (Cu)-ethylene glycol based nanoparticle on radial stretching sheet
,”
Alexandria Eng. J.
71
,
13
20
(
2023
).
6.
A.
Abbas
,
I.
Ijaz
,
M.
Ashraf
, and
H.
Ahmad
, “
Combined effects of variable density and thermal radiation on MHD Sakiadis flow
,”
Case Stud. Therm. Eng.
28
,
101640
(
2021
).
7.
W. K.
Usafzai
, “
Multiple exact solutions of second degree nanofluid slip flow and heat transport in porous medium
,”
Therm. Sci. Eng. Prog.
40
,
101759
(
2023
).
8.
P.
Mishra
,
D.
Kumar
,
Y. D.
Reddy
, and
B. S.
Goud
, “
MHD Williamson micropolar fluid flow pasting a non-linearly stretching sheet under the presence of non-linear heat generation/absorption
,”
J. Indian Chem. Soc.
100
,
100845
(
2023
).
9.
W. K.
Usafzai
and
E. H.
Aly
, “
Multiple exact solutions for micropolar slip flow and heat transfer of a bidirectional moving plate
,”
Therm. Sci. Eng. Prog.
37
,
101584
(
2023
).
10.
M.
Khazayinejad
and
S. S.
Nourazar
, “
On the effect of spatial fractional heat conduction in MHD boundary layer flow using Gr Fe 3 O 4 H 2 O hybrid nanofluid
,”
Int. J. Therm. Sci.
172
,
107265
(
2022
).
11.
V. G.
Fox
,
T. L. E.
Erickson
, and
L. T.
Fan
, “
The laminar boundary layer on a moving continuous flat sheet immersed in a non-Newtonian fluid
,”
AlChE J.
15
,
327
333
(
1969
).
12.
H.
Blasius
, “
Grenzschichten in Flussigkeiten mit kleiner reibung
,”
Z. Angew. Math. Phys.
56
,
1
37
(
1908
).
13.
N. S.
Barlow
,
C. R.
Stanton
,
N.
Hill
,
S. J.
Weinstein
, and
A. G.
Cio
, “
On the summation of divergent, truncated, and underspecified power series via asymptotic approximants
,”
Q. J. Mech. Appl. Math.
70
,
21
48
(
2017
).
14.
N.
Naghshineh
,
W. C.
Reinberger
,
N. S.
Barlow
,
M. A.
Samaha
, and
S. J.
Weinstein
, “
On the use of asymptotically motivated gauge functions to obtain convergent series solutions to nonlinear ODEs
,”
IMA J. Appl. Math.
88
,
43
(
2023
).
15.
A gauge function is the independent variable used in a power series expansion. For example, in e x = ( x n / n ! ), x is the function. If we write exp ( e x ) = ( e n x / n ! ), ex is the gauge function.34,35
16.
R. B.
Bird
,
R.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
(
John Wiley and Sons
,
1987
).
17.
P.
Schweizer
,
Premetered Coating Methods: Attractiveness and Limitations
(
Springer
,
2022
).
18.
J. E.
Glass
,
R. K.
Prud'homme
, “
Coating rheology: Component influence on the rheological response and performance in water-borne coatings in roll applications
in
Liquid Film Coating
, edited by
S. F.
Kistler
and
P. M.
Schweitzer
(
Chapman and Hall
,
New York
,
1997
).
19.
A.
Pantokratoras
, “
Non-similar Blasius and Sakiadis flow of a non-Newtonian Carreau fluid
,”
J. Taiwan Inst. Chem. Eng.
56
,
1
5
(
2015
).
20.
T.
Cebeci
and
H. B.
Keller
, “
Shooting and parallel shooting methods for solving the Falkner-Skan boundary-layer equation
,”
J. Comput. Phys.
7
,
289
300
(
1971
).
21.
E. R.
Belden
,
Z. A.
Dickman
,
S. J.
Weinstein
,
A. D.
Archibee
,
E.
Burroughs
, and
N. S.
Barlow
, “
Asymptotic approximant for the Falkner–Skan boundary-layer equation
,”
Q. J. Mech. Appl. Math.
73
,
36
50
(
2020
).
22.
P.
Henrici
, “
Automatic computations with power series
,”
J. Appl. Comput. Mech.
3
,
10
15
(
1956
).
23.
R. V.
Churchill
,
Complex Variables
, Power Series (
McGraw-Hill
,
1948
), Chap. VI.
24.
R.
Cortell
, “
Numerical comparisons of Blasius and Sakiadis flows
,”
Matematika
26
,
187
196
(
2010
).
25.
R.
Fazio
, “
The iterative transformation method for the Sakiadis problem
,”
Comput. Fluids
106
,
196
200
(
2015
).
26.
Some of the coefficients an in Eq. (8) are zero; hence, we use root test instead of ratio test.
27.
C. M.
Bender
and
S. A.
Orszag
,
Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory
(
McGraw-Hill
,
1978
).
28.
I.
Pop
and
R. S. R. G.
Gorla
, “
Second-order boundary layer solution for a continuous moving surface in a non-Newtonian fluid
,”
Int. J. Eng. Sci.
28
,
313
322
(
1990
).
29.
M.
Van Dyke
,
Perturbation Methods in Fluid Mechanics
(
Academic
,
1964
).
30.
G. A.
Baker
and
P.
Graves-Morris
,
Padé Approximants
(Cambridge University Press,
Cambridge
,
1996
).
31.
It is possible that poles of a Padé approximant arise within the physical domain of a problem for particular degrees of denominator and numerator. If the exact solution is expected to be finite within the physical domain, these Padés are deemed defective. For this exact reason, we did not use M = 25 in Fig. 8 as it led to a defective approximant for the case of α = 0.6
32.
For α = 1, one can use the Newtonian result (7) in place of Eq. (16); coefficients for Eq. (7) are provided by Naghshineh et al.14 
33.
E.
Isaacson
and
H. B.
Keller
,
Analysis of Numerical Methods
(
John Wiley and Sons
,
New York
,
1966
).
34.
M.
Van Dyke
, “
Perturbation methods in fluid mechanics
,”
Gauge Functions and Order Symbols
(
Parabolic
,
1975
), Chap. 3.2.
35.
L. G.
Leal
, “
Laminar flow and convective transport processes. Scaling principles and asymptotic analysis
,”
Asymptotic Expansions—General Considerations
(
Butterworth-Heinemann
,
1992
), Chap. 6.B.
You do not currently have access to this content.