The Sakiadis boundary layer induced by a moving wall in a semi-infinite fluid domain is a fundamental laminar flow field relevant to high speed coating processes. This work provides an analytical solution to the boundary-layer problem for Ostwald–de Waele power law fluids via a power series expansion and extends the approach taken for Newtonian fluids [Naghshineh et al. “On the use of asymptotically motivated gauge functions to obtain convergent series solutions to nonlinear ODEs,” IMA J. of Appl. Math. 88, 43 (2023)] in which variable substitutions (which naturally determine the gauge function in the power series) are chosen to be consistent with the large distance behavior away from the wall. Contrary to prior literature, the asymptotic behavior dictates that a solution only exists in the range of power law exponents, α, lying in the range of . An analytical solution is obtained in the range of approximately , using a convergent power series with an asymptotically motivated gauge function. For power laws corresponding to , the gauge function becomes ill-defined over the full domain, and an approximate analytical solution is obtained using the method of asymptotic approximants [Barlow et al. “On the summation of divergent, truncated, and underspecified power series via asymptotic approximants,” Q. J. Mech. Appl. Math. 70, 21–48 (2017)]. The approximant requires knowledge of two physical constants, which we compute a priori using a numerical shooting method on a finite domain. The utility of the power series solution is that it can be solved on the entire semi-infinite domain and—in contrast to a numerical solution—does not require a finite domain length approximation and subsequent domain length refinement.
Skip Nav Destination
Article navigation
Research Article|
May 02 2023
Asymptotically consistent analytical solutions for the non-Newtonian Sakiadis boundary layer
Special Collection:
Paint and Coating Physics
Nastaran Naghshineh
;
Nastaran Naghshineh
a)
(Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Validation, Visualization, Writing – original draft, Writing – review & editing)
1
School of Mathematical Sciences, Rochester Institute of Technology
, Rochester, New York 14623, USA
2
Department of Sciences and Liberal Arts, Rochester Institute of Technology-Dubai
, Dubai 341055, United Arab Emirates
a)Author to whom correspondence should be addressed: nxncad@rit.edu
Search for other works by this author on:
Nathaniel S. Barlow
;
Nathaniel S. Barlow
(Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Validation, Visualization, Writing – original draft, Writing – review & editing)
1
School of Mathematical Sciences, Rochester Institute of Technology
, Rochester, New York 14623, USA
Search for other works by this author on:
Mohamed A. Samaha
;
Mohamed A. Samaha
(Project administration, Supervision, Validation, Writing – original draft, Writing – review & editing)
1
School of Mathematical Sciences, Rochester Institute of Technology
, Rochester, New York 14623, USA
3
Department of Mechanical and Industrial Engineering, Rochester Institute of Technology-Dubai
, Dubai 341055, United Arab Emirates
Search for other works by this author on:
Steven J. Weinstein
Steven J. Weinstein
(Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing)
1
School of Mathematical Sciences, Rochester Institute of Technology
, Rochester, New York 14623, USA
4
Department of Chemical Engineering, Rochester Institute of Technology
, Rochester, New York 14623, USA
Search for other works by this author on:
a)Author to whom correspondence should be addressed: nxncad@rit.edu
Note: This paper is part of the special topic, Paint and Coating Physics.
Physics of Fluids 35, 053103 (2023)
Article history
Received:
March 08 2023
Accepted:
April 14 2023
Citation
Nastaran Naghshineh, Nathaniel S. Barlow, Mohamed A. Samaha, Steven J. Weinstein; Asymptotically consistent analytical solutions for the non-Newtonian Sakiadis boundary layer. Physics of Fluids 1 May 2023; 35 (5): 053103. https://doi.org/10.1063/5.0149786
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00