To achieve rapid, efficient, and low-cost preparation of large-scale stable aluminum alloy superhydrophobic surfaces, a new preparation method is proposed. The outer surface of the array micro-protrusions was coated with a layer of armor, which was the molten spatter produced during picosecond laser processing. The molten sputters and micro-protrusions combined to form micro–nano composite multi-layer structures. Through these special array micro–nano composite multi-layer structures and chemical modification, the wear-resistant and superhydrophobic properties of aluminum alloy surfaces were realized. According to test results, the array micro–nano composite structures prepared by picosecond laser and chemical modification had a water drop contact angle of 154.6° and a water drop rolling angle of 2°, exhibiting excellent superhydrophobic and anti-adhesion properties. Its self-cleaning, corrosion resistance and friction and wear behavior were systematically analyzed. The analysis results showed that the rolling droplets on the prepared surface could easily take away contaminants. The corrosion voltage and corrosion current density of the prepared superhydrophobic surface are significantly lower than that of the raw surface. In addition, a water drop contact angle of the aluminum alloy sample maintained at 145.1° after five wear tests, indicating the prepared surface after wear testing still had hydrophobic performance. The innovative method proposed in this study provides a simple and effective method for preparing large-scale wear-resistant superhydrophobic surface of aluminum alloy.

1.
K.
Li
,
Y.
Xie
,
J.
Lei
,
S.
Zhang
,
Z.
Liu
, and
L.
Lu
, “
An inspiration from purple orchid leaves: Surface characteristics and wettability of nanoscale organometallic coatings electrodeposited on laser-patterned microstructures
,”
Surf. Coat. Technol.
427
,
127817
(
2021
).
2.
Z.
Dong
,
X.
Sun
,
D.
Kong
,
D.
Chu
,
Y.
Hu
, and
J. A.
Duan
, “
Spatial light modulated femtosecond laser ablated durable superhydrophobic copper mesh for oil-water separation and self-cleaning
,”
Surf. Coat. Technol.
402
,
126254
(
2020
).
3.
J.
Zhao
,
J.
Guo
,
P.
Shrotriya
,
Y.
Wang
,
Y.
Han
,
Y.
Dong
, and
S.
Yang
, “
A rapid one-step nanosecond laser process for fabrication of super-hydrophilic aluminum surface
,”
Opt. Laser Technol.
117
,
134
141
(
2019
).
4.
S.
Milles
,
M.
Soldera
,
B.
Voisiat
, and
A. F.
Lasagni
, “
Fabrication of superhydrophobic and ice-repellent surfaces on pure aluminium using single and multiscaled periodic textures
,”
Sci. Rep.
9
,
13944
(
2019
).
5.
L.
Liang
,
L.
Lu
,
D.
Xing
,
Z.
Wan
, and
Y.
Tang
, “
Preparation of superhydrophobic and anti-resin-adhesive surfaces with micro/nanoscale structures on high-speed steel via laser processing
,”
Surf. Coat. Technol.
357
,
57
68
(
2019
).
6.
F.
Guo
,
S.
Duan
,
D.
Wu
,
K.
Matsuda
,
T.
Wang
, and
Y.
Zou
, “
Facile etching fabrication of superhydrophobic 7055 aluminum alloy surface towards chloride environment anticorrosion
,”
Corros. Sci.
182
,
109262
(
2021
).
7.
X.
Li
,
Y.
Jiang
,
X.
Tan
,
Z.
Zhang
,
Z.
Jiang
,
J.
Lian
,
C.
Wen
, and
L.
Ren
, “
Superhydrophobic brass surfaces with tunable water adhesion fabricated by laser texturing followed by heat treatment and their anti-corrosion ability
,”
Appl. Surf. Sci.
575
,
151596
(
2022
).
8.
M. M.
Chehrghani
,
T.
Abbasiasl
,
A. K.
Sadaghiani
, and
A.
Kosar
, “
Copper-based superhydrophobic nanostructures for heat transfer in flow condensation
,”
ACS Appl. Nano Mater.
4
,
1719
1732
(
2021
).
9.
X.
Wang
,
B.
Xu
, and
Z.
Chen
, “
Hierarchical microporous superhydrophobic surfaces with nanostructures enhancing vapor condensation heat transfer
,”
Appl. Therm. Eng.
219
,
119527
(
2023
).
10.
Z.
Jin
,
H.
Mei
,
L.
Pan
,
H.
Liu
, and
L.
Cheng
, “
Superhydrophobic self-cleaning hierarchical micro-/nanocomposite coating with high corrosion resistance and durability
,”
ACS Sustainable Chem. Eng.
9
,
4111
4121
(
2021
).
11.
T.
Zhu
,
Y.
Cheng
,
J.
Huang
,
J.
Xiong
,
M.
Ge
,
J.
Mao
,
Z.
Liu
,
X.
Dong
,
Z.
Chen
, and
Y. J.
Lai
, “
A transparent superhydrophobic coating with mechanochemical robustness for anti-icing, photocatalysis and self-cleaning
,”
Chem. Eng. J.
399
,
125746
(
2020
).
12.
Y.
Zheng
,
C.
Zhang
,
J.
Wang
,
L.
Yang
,
C.
Shen
,
Z.
Han
, and
Y.
Liu
, “
Nonwet kingfisher flying in the rain: The tumble of droplets on moving oriented anisotropic superhydrophobic substrates
,”
ACS Appl. Mater. Interfaces
12
,
35707
35715
(
2020
).
13.
Z.
Zheng
,
H.
Yang
,
Y.
Cao
, and
Z.
Dai
, “
Laser-induced wettability gradient surface of the aluminum matrix used for directional transportation and collection of underwater bubbles
,”
ACS Omega
5
,
718
725
(
2019
).
14.
Y.
Chen
,
J.
Long
,
B.
Xie
,
Y.
Kuang
,
X.
Chen
,
M.
Hou
,
J.
Gao
,
H.
Liu
,
Y.
He
, and
C.-P.
Wong
, “
One-step ultraviolet laser-induced fluorine-doped graphene achieving superhydrophobic properties and its application in deicing
,”
ACS Appl. Mater. Interfaces
14
,
4647
4655
(
2022
).
15.
R.
Pan
,
H.
Zhang
, and
M.
Zhong
, “
Triple-scale superhydrophobic surface with excellent anti-icing and icephobic performance via ultrafast laser hybrid fabrication
,”
ACS Appl. Mater. Interfaces
13
,
1743
1753
(
2020
).
16.
K.
Xu
,
W.
Shen
,
S.
Yang
,
Y.
Wu
,
D.
Zhao
,
Z.
Leng
,
Y.
Tang
,
H.
Zhu
,
S.
Liu
, and
Z.
Zhang
, “
Laser-enhanced electrodeposition preparation technology of superhydrophobic micro-nano structure coating
,”
Colloids Surf., A
657
,
130507
(
2023
).
17.
W.
Rong
,
H.
Zhang
,
Z.
Mao
,
L.
Chen
, and
X.
Liu
, “
Improved stable drag reduction of controllable laser-patterned superwetting surfaces containing bioinspired micro/nanostructured arrays
,”
ACS Omega
7
,
2049
2063
(
2022
).
18.
J.
Zhao
,
R.
Sun
,
C.
Liu
, and
J.
Mo
, “
Application of ZnO/epoxy resin superhydrophobic coating for buoyancy enhancement and drag reduction
,”
Colloids Surf., A
651
,
129714
(
2022
).
19.
R. N.
Wenzel
, “
Resistance of solid surfaces to wetting by water
,”
Ind. Eng. Chem.
28
,
988
994
(
1936
).
20.
A.
Cassie
and
S.
Baxter
, “
Wettability of porous surfaces
,”
Trans. Faraday Soc.
40
,
546
551
(
1944
).
21.
Y.
Liu
,
M.
Wu
,
Z.
Zhang
,
J.
Lu
,
K.
Xu
,
H.
Zhu
,
Y.
Wu
,
B.
Wang
, and
W.
Lei
, “
A review on applications of functional superhydrophobic surfaces prepared by laser biomimetic manufacturing
,”
J. Mater. Sci.
58
,
3421
3459
(
2023
).
22.
H.
Wang
,
H.
Lu
, and
W.
Zhao
, “
A review of droplet bouncing behaviors on superhydrophobic surfaces: Theory, methods, and applications
,”
Phys. Fluids
35
,
021301
(
2023
).
23.
Z.
Wang
,
L.
Shen
,
W.
Jiang
,
M.
Fan
,
D.
Liu
, and
J.
Zhao
, “
Superhydrophobic nickel coatings fabricated by scanning electrodeposition on stainless steel formed by selective laser melting
,”
Surf. Coat. Technol.
377
,
124886
(
2019
).
24.
L.
Shen
,
M.
Fan
,
M.
Qiu
,
W.
Jiang
, and
Z.
Wang
, “
Superhydrophobic nickel coating fabricated by scanning electrodeposition
,”
Appl. Surf. Sci.
483
,
706
712
(
2019
).
25.
J.
Sun
,
W.
Cheng
,
J.-L.
Song
,
Y.
Lu
,
Y.-K.
Sun
,
L.
Huang
,
X.
Liu
,
Z.-J.
Jin
,
C. J.
Carmalt
, and
I.
Parkin
, “
Fabrication of superhydrophobic micro post array on aluminum substrates using mask electrochemical machining
,”
Chin. J. Mech. Eng.
31
,
72
(
2018
).
26.
R.
Liu
,
Z.
Chi
,
L.
Cao
,
Z.
Weng
,
L.
Wang
,
L.
Li
,
S.
Saeed
,
Z.
Lian
, and
Z.
Wang
, “
Fabrication of biomimetic superhydrophobic and anti-icing Ti6Al4V alloy surfaces by direct laser interference lithography and hydrothermal treatment
,”
Appl. Surf. Sci.
534
,
147576
(
2020
).
27.
J.
Feng
,
M. T.
Tuominen
, and
J. P.
Rothstein
, “
Hierarchical superhydrophobic surfaces fabricated by dual-scale electron-beam-lithography with well-ordered secondary nanostructures
,”
Adv. Funct. Mater.
21
,
3715
3722
(
2011
).
28.
J.
Tong
,
S.
Liu
,
R.
Peng
,
H.
Sun
, and
S.
Jiang
, “
Development of a micro/nano composite super-hydrophobic silicon surface with nail-shaped texture/dual self-assembly monolayers and its wetting behavior
,”
Appl. Surf. Sci.
544
,
148803
(
2021
).
29.
N.
Celik
,
I.
Torun
,
M.
Ruzi
,
A.
Esidir
, and
M. S.
Onses
, “
Fabrication of robust superhydrophobic surfaces by one-step spray coating: Evaporation driven self-assembly of wax and nanoparticles into hierarchical structures
,”
Chem. Eng. J.
396
,
125230
(
2020
).
30.
A.
Roslizar
,
S.
Dottermusch
,
F.
Vüllers
,
M. N.
Kavalenka
,
M.
Guttmann
,
M.
Schneider
,
U. W.
Paetzold
,
H.
Hölscher
,
B. S.
Richards
, and
E.
Klampaftis
, “
Self-cleaning performance of superhydrophobic hot-embossed fluoropolymer films for photovoltaic modules
,”
Sol. Energy Mater. Sol. Cells
189
,
188
196
(
2019
).
31.
J.
Yong
,
Q.
Yang
,
C.
Guo
,
F.
Chen
, and
X.
Hou
, “
A review of femtosecond laser-structured superhydrophobic or underwater superoleophobic porous surfaces/materials for efficient oil/water separation
,”
RSC Adv.
9
,
12470
12495
(
2019
).
32.
M. V.
Rukosuyev
,
J.
Lee
,
S. J.
Cho
,
G.
Lim
, and
M. B.
Jun
, “
One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation
,”
Appl. Surf. Sci.
313
,
411
417
(
2014
).
33.
Y.
Lin
,
J.
Han
,
M.
Cai
,
W.
Liu
,
X.
Luo
,
H.
Zhang
, and
M.
Zhong
, “
Durable and robust transparent superhydrophobic glass surfaces fabricated by a femtosecond laser with exceptional water repellency and thermostability
,”
J. Mater. Chem. A
6
,
9049
9056
(
2018
).
34.
L.
Yang
,
X.
Shen
,
Q.
Yang
,
J.
Liu
,
W.
Wu
,
D.
Li
,
J.
Du
,
B.
Zhang
, and
S.
Fan
, “
Fabrication of biomimetic anisotropic super-hydrophobic surface with rice leaf-like structures by femtosecond laser
,”
Opt. Mater.
112
,
110740
(
2021
).
35.
P.
Hauschwitz
,
R.
Jagdheesh
,
D.
Rostohar
,
J.
Brajer
,
J.
Kopeček
,
P.
Jiřícek
,
J.
Houdková
, and
T.
Mocek
, “
Hydrophilic to ultrahydrophobic transition of Al 7075 by affordable ns fiber laser and vacuum processing
,”
Appl. Surf. Sci.
505
,
144523
(
2020
).
36.
Z.
Zhang
,
Q.
Gu
,
W.
Jiang
,
H.
Zhu
,
K.
Xu
,
Y.
Ren
, and
C.
Xu
, “
Achieving of bionic super-hydrophobicity by electrodepositing nano-Ni-pyramids on the picosecond laser-ablated micro-Cu-cone surface
,”
Surf. Coat. Technol.
363
,
170
178
(
2019
).
37.
W.
Liu
,
P.
Fan
,
M.
Cai
,
X.
Luo
,
C.
Chen
,
R.
Pan
,
H.
Zhang
, and
M.
Zhong
, “
An integrative bioinspired venation network with ultra-contrasting wettability for large-scale strongly self-driven and efficient water collection
,”
Nanoscale
11
,
8940
8949
(
2019
).
38.
K.
Yin
,
D.
Chu
,
X.
Dong
,
C.
Wang
,
J.-A.
Duan
, and
J.
He
, “
Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil–water separation
,”
Nanoscale
9
,
14229
14235
(
2017
).
39.
X.
Li
,
Y.
Jiang
,
Z.
Jiang
,
Y.
Li
,
C.
Wen
,
D.
Zhang
,
J.
Lian
, and
Z.
Zhang
, “
Improvement of corrosion resistance of H59 brass through fabricating superhydrophobic surface using laser ablation and heating treatment
,”
Corros. Sci.
180
,
109186
(
2021
).
40.
Y.
Lee
,
Y.
Chung
,
J.
Park
,
K.
Park
,
Y.
Seo
,
S.
Hong
,
S. H.
Lee
,
H.
Jeon
, and
J.
Seo
, “
Lubricant-infused directly engraved nano-microstructures for mechanically durable endoscope lens with anti-biofouling and anti-fogging properties
,”
Sci. Rep.
10
,
17454
(
2020
).
41.
Q.
Chen
,
C.
Zhang
,
Y.
Cai
,
X.
Luo
,
B.
Wang
,
Q.
Song
, and
Z.
Liu
, “
Periodically oriented superhydrophobic microstructures prepared by laser ablation-chemical etching process for drag reduction
,”
Appl. Surf. Sci.
615
,
156403
(
2023
).
42.
J.
Song
,
D.
Wang
,
L.
Hu
,
X.
Huang
, and
Y.
Chen
, “
Superhydrophobic surface fabricated by nanosecond laser and perhydropolysilazane
,”
Appl. Surf. Sci.
455
,
771
779
(
2018
).
43.
C.
Huang
,
X.
Ye
,
X.
Yang
,
A.
Yao
, and
Z.
Fan
, “
Preparation of a superhydrophobic aluminium alloy surface by UV laser
,”
Surf. Eng.
36
,
558
564
(
2020
).
44.
Y. L.
Zhang
,
H.
Xia
,
E.
Kim
, and
H. B.
Sun
, “
Recent developments in superhydrophobic surfaces with unique structural and functional properties
,”
Soft Matter
8
,
11217
11231
(
2012
).
45.
G.
Xin
,
C.
Wu
,
W.
Liu
,
Y.
Rong
, and
Y.
Huang
, “
Anti-corrosion superhydrophobic surfaces of Al alloy based on micro-protrusion array structure fabricated by laser direct writing
,”
J. Alloys Compd.
881
,
160649
(
2021
).
46.
X.
Jing
,
Y.
Xia
,
F.
Chen
,
C.
Yang
,
Z.
Yang
, and
S. H. I. J.
Jaffery
, “
Preparation of superhydrophobic glass surface with high adhesion
,”
Colloids Surf., A
633
,
127861
(
2022
).
47.
N.
Saleema
,
D. K.
Sarkar
,
R. W.
Paynter
, and
X. G.
Chen
, “
Superhydrophobic aluminum alloy surfaces by a novel one-step process
,”
ACS Appl. Mater. Interfaces
2
,
2500
2502
(
2010
).
48.
H.
Wang
,
J.
Zhuang
,
H.
Qi
,
J.
Yu
,
Z.
Guo
, and
Y.
Ma
, “
Laser-chemical treated superhydrophobic surface as a barrier to marine atmospheric corrosion
,”
Surf. Coat. Technol.
401
,
126255
(
2020
).
49.
Q.
Ma
,
Z.
Tong
,
W.
Wang
, and
G.
Dong
, “
Fabricating robust and repairable superhydrophobic surface on carbon steel by nanosecond laser texturing for corrosion protection
,”
Appl. Surf. Sci.
455
,
748
757
(
2018
).
50.
M.
Wang
,
D.
Zhang
,
Z.
Yang
,
C.
Yang
,
Y.
Tian
, and
X.
Liu
, “
A contrastive investigation on the anticorrosive performance of stearic acid and fluoroalkylsilane-modified superhydrophobic surface in salt, alkali, and acid solution
,”
Langmuir
36
,
10279
10292
(
2020
).
51.
J.
Sun
,
W.
Wang
,
Z.
Liu
,
B.
Li
,
K.
Xing
, and
Z.
Yang
, “
Study on selective laser melting 316L stainless steel parts with superhydrophobic surface
,”
Appl. Surf. Sci.
533
,
147445
(
2020
).
You do not currently have access to this content.