Tesla valve is a particular check valve that can be used as a fluidic diode, but has no moving parts, and shows promising applications in macro- and microfluidic systems. Fluidic diode indicates that the inflow direction of a Tesla valve affects the pressure drop, allowing fluid to pass easily in one direction while presenting higher resistance in the reverse direction. Although previous studies have shown that the diode performance of such valves can be significantly improved by placing a series of valve units in a compact cascade, the reason is still unclear. In this study, the effect of the internal flow, especially the inflow status of each valve unit, on the diode characteristics of a multistage Tesla valve is investigated numerically and experimentally. Through a proper mathematic treatment, we derived the limiting diodicity in terms of the number of units and demonstrated that the diodicity enhancement of a multistage Tesla valve with its number of units was mainly due to the distorted inflow from subsequent units. To further verify this hypothesis, we elongated the space between subsequent units and found as expected the diodicity declined. The results indicate that distorted inflow can enhance the diodicity of a Tesla valve.

1.
A. R.
Gamboa
,
C. J.
Morris
, and
F. K.
Forster
, “
Improvements in fixed-valve micropump performance through shape optimization of valves
,”
J. Fluids Eng. Trans. Asme
127
(
2
),
339
346
(
2005
).
2.
T.
Nikola
, U.S. patent 1329559A (3 February
1920
).
3.
C.-T.
Wang
,
Y.-M.
Chen
,
P.-A.
Hong
, and
Y.-T.
Wang
, “
Tesla valves in micromixers
,”
Int. J. Chem. React. Eng.
12
(
1
),
397
402
(
2014
).
4.
R. H. W.
Lam
and
W. J.
Li
, “
A digitally controllable polymer-based microfluidic mixing module array
,”
Micromachines
3
(
2
),
279
294
(
2012
).
5.
X.
Weng
,
S.
Yan
,
Y.
Zhang
,
J.
Liu
, and
J.
Shen
, “
Design, simulation and experimental study of a micromixer based on Tesla valve structure
,”
Huagong Jinzhan Chem. Ind. Eng. Prog.
40
(
8
),
4173
4178
(
2021
).
6.
S. F.
de Vries
,
D.
Florea
,
F. G. A.
Homburg
, and
A. J. H.
Frijns
, “
Design and operation of a Tesla-type valve for pulsating heat pipes
,”
Int. J. Heat Mass Transfer
105
,
1
11
(
2017
).
7.
J. D.
Fairley
,
S. M.
Thompson
, and
D.
Anderson
, “
Time-frequency analysis of flat-plate oscillating heat pipes
,”
Int. J. Therm. Sci.
91
,
113
124
(
2015
).
8.
Y.
Yao
,
Z.
Zhou
,
H.
Liu
,
T.
Li
, and
X.
Gao
, “
Valveless piezoelectric pump with reverse diversion channel
,”
Electronics
10
(
14
),
1712
(
2021
).
9.
S.
Derakhshan
,
B.
Beigzadeh
,
M.
Rashidi
, and
H.
Pourrahmani
, “
Performance improvement and two-phase flow study of a piezoelectric micropump with Tesla nozzle-diffuser microvalves
,”
J. Appl. Fluid Mech.
12
(
2
),
341
350
(
2019
).
10.
P.
Zhou
,
T.
Zhang
,
T. W.
Simon
, and
T.
Cui
, “
Simulation and experiments on a valveless micropump with fluidic diodes based on topology optimization
,”
J. Microelectromech. Syst.
31
(
2
),
292
297
(
2022
).
11.
Z.
Jin
,
Z.
Gao
,
M.
Chen
, and
J.
Qian
, “
Parametric study on Tesla valve with reverse flow for hydrogen decompression
,”
Int. J. Hydrogen Energy
43
(
18
),
8888
8896
(
2018
).
12.
C.-H.
Tsai
,
C.-H.
Lin
,
L.-M.
Fu
, and
H.-C.
Chen
, “
High-performance microfluidic rectifier based on sudden expansion channel with embedded block structure
,”
Biomicrofluidics
6
(
2
),
024108
(
2012
).
13.
Y.
Lu
,
J.
Wang
,
F.
Liu
,
Y.
Liu
,
F.
Wang
,
N.
Yang
,
D.
Lu
, and
Y.
Jia
, “
Performance optimisation of Tesla valve-type channel for cooling lithium-ion batteries
,”
Appl. Therm. Eng.
212
,
118583
(
2022
).
14.
K.
Monika
,
C.
Chakraborty
,
S.
Roy
,
R.
Sujith
, and
S. P.
Datta
, “
A numerical analysis on multi-stage Tesla valve based cold plate for cooling of pouch type Li-ion batteries
,”
Int. J. Heat Mass Transfer
177
,
121560
(
2021
).
15.
H.
Shi
,
Y.
Cao
,
Y.
Zeng
,
Y.
Zhou
,
W.
Wen
,
C.
Zhang
,
Y.
Zhao
, and
Z.
Chen
, “
Wearable Tesla valve-based sweat collection device for sweat colorimetric analysis
,”
Talanta
240
,
123208
(
2022
).
16.
T.
Wahidi
and
A. K.
Yadav
, “
Instability mitigation by integrating twin Tesla type valves in supercritical carbon dioxide based natural circulation loop
,”
Appl. Therm. Eng.
182
,
116087
(
2021
).
17.
Q. M.
Nguyen
,
J.
Abouezzi
, and
L.
Ristroph
, “
Early turbulence and pulsatile flows enhance diodicity of Tesla's macrofluidic valve
,”
Nat. Commun.
12
(
1
),
2884
(
2021
).
18.
R. A.
Chandavar
, “Stability analysis of Tesla valve based natural circulation loop for decay heat removal in nuclear power plants,” in
2019 Advances in Science and Engineering Technology International Conferences (ASET)
(
IEEE
,
2019
), pp.
1
6
.
19.
Q. M.
Nguyen
,
A. U.
Oza
,
J.
Abouezzi
,
G.
Sun
,
S.
Childress
,
C.
Frederick
, and
L.
Ristroph
, “
Flow rectification in loopy network models of bird lungs
,”
Phys. Rev. Lett.
126
(
11
),
114501
(
2021
).
20.
S. C.
Leigh
,
A. P.
Summers
,
S. L.
Hoffmann
, and
D. P.
German
, “
Shark spiral intestines may operate as Tesla valves
,”
Proc. R. Soc. B
288
(
1955
),
20211359
(
2021
).
21.
F. K.
Forster
,
R. L.
Bardell
,
M. A.
Afromowitz
,
N. R.
Sharma
, and
A.
Blanchard
, “
Design, fabrication and testing of fixed-valve micro-pumps
,”
Asme-Publ.-Fed.
234
,
39
44
(
1995
).
22.
M.
Deshpande
,
J. R.
Gilbert
,
R. L.
Bardell
, and
F. R.
Forster
, “
Design analysis of no-moving-parts valves for micropumps
,” in
ASME International Mechanical Engineering Congress and Exposition
(
American Society of Mechanical Engineers
,
1998
), pp.
153
158
.
23.
T. Q.
Truong
and
N. T.
Nguyen
, “
Simulation and optimization of Tesla valves
,” Nanotechnology
1
,
178
181
(
2003
).
24.
A. Y.
Nobakht
,
M.
Shahsavan
, and
A.
Paykani
, “
Numerical study of diodicity mechanism in different Tesla-type microvalves
,”
J. Appl. Res. Technol.
11
,
876
885
(
2013
).
25.
P.
Hu
,
P.
Wang
,
L.
Liu
,
X.
Ruan
,
L.
Zhang
, and
Z.
Xu
, “
Numerical investigation of Tesla valves with a variable angle
,”
Phys. Fluids
34
(
3
),
033603
(
2022
).
26.
Q. M.
Nguyen
,
D.
Huang
,
E.
Zauderer
,
G.
Romanelli
,
C. L.
Meyer
, and
L.
Ristroph
, “
Tesla's fluidic diode and the electronic-hydraulic analogy
,”
Am. J. Phys.
89
(
4
),
393
402
(
2021
).
27.
K.
Mohammadzadeh
,
E. M.
Kolahdouz
,
E.
Shirani
, and
M. B.
Shafii
, “
Numerical investigation on the effect of the size and number of stages on the Tesla microvalve efficiency
,”
J. Mech.
29
(
3
),
527
534
(
2013
).
28.
S. M.
Thompson
,
B. J.
Paudel
,
T.
Jamal
, and
D. K.
Walters
, “
Numerical investigation of multistaged Tesla valves
,”
J. Fluids Eng. Trans. Asme
136
(
8
),
081102
(
2014
).
29.
J.
Raffel
,
S.
Ansari
, and
D. S.
Nobes
, “
An experimental investigation of flow phenomena in a multistage micro-Tesla valve
,”
J. Fluids Eng. Trans. ASME
143
(
11
),
111205
(
2021
).
30.
H. D.
Haustein
and
B.
Kashi
, “
Distortion of pipe-flow development by boundary layer growth and unconstrained inlet conditions
,”
Phys. Fluids
31
(
6
),
063602
(
2019
).
31.
W. R.
Dean
, “
Note on the motion of fluid in a curved pipe
,”
Mathematika
4
,
77
85
(
1927
).
32.
X.
Sun
,
S.
Wang
, and
M.
Zhao
, “
Viscoelastic flow in a curved duct with rectangular cross section over a wide range of Dean number
,”
Phys. Fluids
33
(
3
),
033101
(
2021
).
33.
P.
Schlatter
,
L.
Hufnagel
,
J.
Canton
,
E.
Merzari
,
O.
Marin
, and
R.
Orlu
, in
10th International Symposium on Turbulence and Shear Flow Phenomena, Chicago, IL (TSFP, 2017).
You do not currently have access to this content.