Transport of material across liquid interfaces is ubiquitous for living cells and is also a crucial step in drug delivery and in many industrial processes. The fluids that are present on either side of the interfaces will usually have different viscosities. We present a physical model for the dynamics of microswimmers near a soft and penetrable interface that we solve using computer simulations of Navier–Stokes flows. The literature contains studies of similar isoviscous fluid systems, where the two fluids have the same viscosity. Here, we extend this to the more general case where they have different viscosities. In particular, we investigate the dynamics of swimmers approaching a fluid–fluid interface between phase-separated fluids with distinct viscosities. We find that the incoming angle, viscosity ratio, and swimming type (i.e., pusher, puller, or neutral) strongly influence the collision, resulting in four distinct dynamical modes: bouncing, sliding, penetrating, and hovering. The former three modes are also observed for isoviscous systems, while the hovering, in which strong pullers swim parallel to the interface at a non-zero distance, requires mismatched viscosities. Furthermore, swimmers exhibit a preference for lower viscosity fluids, known as viscotaxis. This implies that, for a wide distribution of contact angles, more swimmers will transition into the low-viscosity environment than vice versa. Consequently, a swimmer starting in a low-viscosity fluid is more likely to bounce back at the interface, while a swimmer in a high-viscosity fluid is more likely to penetrate the interface and enter the lower viscosity fluid.

1.
J. C.
Kirkman-Brown
and
D. J.
Smith
, “
Sperm motility: Is viscosity fundamental to progress?
,”
MHR: Basic Sci. Reprod. Med.
17
,
539
544
(
2011
).
2.
H.
Gadêlha
,
E.
Gaffney
,
D.
Smith
, and
J.
Kirkman-Brown
, “
Nonlinear instability in flagellar dynamics: A novel modulation mechanism in sperm migration?
,”
J. R. Soc., Interface
7
,
1689
1697
(
2010
).
3.
L.
Björndahl
, “
The usefulness and significance of assessing rapidly progressive spermatozoa
,”
Asian J. Androl.
12
,
33
(
2010
).
4.
H. V.
Nguyen
and
V.
Faivre
, “
Targeted drug delivery therapies inspired by natural taxes
,”
J. Controlled Release
322
,
439
456
(
2020
).
5.
H.
Ceylan
,
I. C.
Yasa
,
O.
Yasa
,
A. F.
Tabak
,
J.
Giltinan
, and
M.
Sitti
, “
3d-printed biodegradable microswimmer for drug delivery and targeted cell labeling
,” bioRxiv: 379024 (
2018
).
6.
B.
Mostaghaci
,
O.
Yasa
,
J.
Zhuang
, and
M.
Sitti
, “
Bioadhesive bacterial microswimmers for targeted drug delivery in the urinary and gastrointestinal tracts
,”
Adv. Sci.
4
,
1700058
(
2017
).
7.
B.-W.
Park
,
J.
Zhuang
,
O.
Yasa
, and
M.
Sitti
, “
Multifunctional bacteria-driven microswimmers for targeted active drug delivery
,”
ACS Nano
11
,
8910
8923
(
2017
).
8.
X.
Yan
,
Q.
Zhou
,
J.
Yu
,
T.
Xu
,
Y.
Deng
,
T.
Tang
,
Q.
Feng
,
L.
Bian
,
Y.
Zhang
,
A.
Ferreira
et al, “
Magnetite nanostructured porous hollow helical microswimmers for targeted delivery
,”
Adv. Funct. Mater.
25
,
5333
5342
(
2015
).
9.
D.
Laage
and
J. T.
Hynes
, “
A molecular jump mechanism of water reorientation
,”
Science
311
,
832
835
(
2006
).
10.
K.
Ishimoto
and
E. A.
Gaffney
, “
Squirmer dynamics near a boundary
,”
Phys. Rev. E
88
,
062702
(
2013
).
11.
J. S.
Lintuvuori
,
A. T.
Brown
,
K.
Stratford
, and
D.
Marenduzzo
, “
Hydrodynamic oscillations and variable swimming speed in squirmers close to repulsive walls
,”
Soft Matter
12
,
7959
7968
(
2016
).
12.
G.-J.
Li
and
A. M.
Ardekani
, “
Hydrodynamic interaction of microswimmers near a wall
,”
Phys. Rev. E
90
,
013010
(
2014
).
13.
I.
Pagonabarraga
and
I.
Llopis
, “
The structure and rheology of sheared model swimmer suspensions
,”
Soft Matter
9
,
7174
7184
(
2013
).
14.
Z.
Shen
,
A.
Würger
, and
J. S.
Lintuvuori
, “
Hydrodynamic interaction of a self-propelling particle with a wall
,”
Eur. Phys. J. E: Soft Matter Biol. Phys.
41
,
39
(
2018
).
15.
G.
Volpe
,
I.
Buttinoni
,
D.
Vogt
,
H.-J.
Kümmerer
, and
C.
Bechinger
, “
Microswimmers in patterned environments
,”
Soft Matter
7
,
8810
8815
(
2011
).
16.
F.
Fadda
,
J. J.
Molina
, and
R.
Yamamoto
, “
Dynamics of a chiral swimmer sedimenting on a flat plate
,”
Phys. Rev. E
101
,
052608
(
2020
).
17.
E.
Lauga
,
W. R.
DiLuzio
,
G. M.
Whitesides
, and
H. A.
Stone
, “
Swimming in circles: Motion of bacteria near solid boundaries
,”
Biophys. J.
90
,
400
412
(
2006
).
18.
P.
Malgaretti
and
J.
Harting
, “
Phoretic colloids close to and trapped at fluid interfaces
,”
ChemNanoMat
7
,
1073
1081
(
2021
).
19.
T.
Peter
,
P.
Malgaretti
,
N.
Rivas
,
A.
Scagliarini
,
J.
Harting
, and
S.
Dietrich
, “
Numerical simulations of self-diffusiophoretic colloids at fluid interfaces
,”
Soft Matter
16
,
3536
3547
(
2020
).
20.
R.
Di Leonardo
,
D.
Dell'Arciprete
,
L.
Angelani
, and
V.
Iebba
, “
Swimming with an image
,”
Phys. Rev. Lett.
106
,
038101
(
2011
).
21.
R. A.
Shah
,
Z.
Asghar
, and
N.
Ali
, “
Mathematical modeling related to bacterial gliding mechanism at low Reynolds number with Ellis Slime
,”
Eur. Phys. J. Plus
137
,
600
(
2022
).
22.
Z.
Asghar
,
W.
Shatanawi
, and
S.
Hussain
, “
Biomechanics of bacterial gliding motion with Oldroyd-4 constant slime
,”
Eur. Phys. J.: Spec. Top.
(published online 2022).
23.
Z.
Asghar
,
R. A.
Shah
,
W.
Shatanawi
, and
N.
Ali
, “
FENE-P fluid flow generated by self-propelling bacteria with slip effects
,”
Comput. Biol. Med.
153
,
106386
(
2023
).
24.
X.
Wang
,
M.
In
,
C.
Blanc
,
P.
Malgaretti
,
M.
Nobili
, and
A.
Stocco
, “
Wetting and orientation of catalytic Janus colloids at the surface of water
,”
Faraday Discuss.
191
,
305
324
(
2016
).
25.
P.
Malgaretti
,
M.
Popescu
, and
S.
Dietrich
, “
Self-diffusiophoresis induced by fluid interfaces
,”
Soft Matter
14
,
1375
1388
(
2018
).
26.
H.
Gidituri
,
Z.
Shen
,
A.
Würger
, and
J. S.
Lintuvuori
, “
Reorientation dynamics of microswimmers at fluid-fluid interfaces
,”
Phys. Rev. Fluids
7
,
L042001
(
2022
).
27.
E. A.
Gaffney
,
H.
Gadêlha
,
D. J.
Smith
,
J. R.
Blake
, and
J. C.
Kirkman-Brown
, “
Mammalian sperm motility: Observation and theory
,”
Annu. Rev. Fluid Mech.
43
,
501
(
2011
).
28.
C.
Feng
,
J. J.
Molina
,
M. S.
Turner
, and
R.
Yamamoto
, “
Dynamics of microswimmers near a soft penetrable interface
,”
Phys. Rev. Res.
4
,
043202
(
2022
).
29.
M. J.
Lighthill
, “
On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers
,”
Commun. Pure Appl. Math.
5
,
109
118
(
1952
).
30.
M. T.
Downton
and
H.
Stark
, “
Simulation of a model microswimmer
,”
J. Phys.: Condens. Matter
21
,
204101
(
2009
).
31.
O. S.
Pak
and
E.
Lauga
, “
Generalized squirming motion of a sphere
,”
J. Eng. Math.
88
,
1
28
(
2014
).
32.
T.
Ishikawa
,
M.
Simmonds
, and
T. J.
Pedley
, “
Hydrodynamic interaction of two swimming model micro-organisms
,”
J. Fluid Mech.
568
,
119
160
(
2006
).
33.
T. J.
Pedley
,
D. R.
Brumley
, and
R. E.
Goldstein
, “
Squirmers with swirl: A model for volvox swimming
,”
J. Fluid Mech.
798
,
165
186
(
2016
).
34.
H.
Shinto
, “
Computer simulation of wetting, capillary forces, and particle-stabilized emulsions: From molecular-scale to mesoscale modeling
,”
Adv. Powder Technol.
23
,
538
547
(
2012
).
35.
G.
Lecrivain
,
R.
Yamamoto
,
U.
Hampel
, and
T.
Taniguchi
, “
Direct numerical simulation of a particle attachment to an immersed bubble
,”
Phys. Fluids
28
,
083301
(
2016
).
36.
G.
Lecrivain
,
T. B. P.
Grein
,
R.
Yamamoto
,
U.
Hampel
, and
T.
Taniguchi
, “
Eulerian/Lagrangian formulation for the elasto-capillary deformation of a flexible fibre
,”
J. Comput. Phys.
409
,
109324
(
2020
).
37.
R.
Yamamoto
,
J. J.
Molina
, and
Y.
Nakayama
, “
Smoothed profile method for direct numerical simulations of hydrodynamically interacting particles
,”
Soft Matter
17
,
4226
4253
(
2021
).
38.
Y.
Nakayama
,
K.
Kim
, and
R.
Yamamoto
, “
Simulating (electro)hydrodynamic effects in colloidal dispersions: Smoothed profile method
,”
Eur. Phys. J. E
26
,
361
368
(
2008
).
39.
Y.
Nakayama
and
R.
Yamamoto
, “
Simulation method to resolve hydrodynamic interactions in colloidal dispersions
,”
Phys. Rev. E
71
,
036707
(
2005
).
40.
J. J.
Molina
and
R.
Yamamoto
, “
Direct numerical simulations of rigid body dispersions. I. Mobility/friction tensors of assemblies of spheres
,”
J. Chem. Phys.
139
,
234105
(
2013
).
41.
K.
Kim
,
Y.
Nakayama
, and
R.
Yamamoto
, “
Direct numerical simulations of electrophoresis of charged colloids
,”
Phys. Rev. Lett.
96
,
208302
(
2006
).
42.
A.
Hamid
,
J. J.
Molina
, and
R.
Yamamoto
, “
Sedimentation of non-Brownian spheres at high volume fractions
,”
Soft Matter
9
,
10056
10068
(
2013
).
43.
J. J.
Molina
,
K.
Otomura
,
H.
Shiba
,
H.
Kobayashi
,
M.
Sano
, and
R.
Yamamoto
, “
Rheological evaluation of colloidal dispersions using the smoothed profile method: Formulation and applications
,”
J. Fluid Mech.
792
,
590
619
(
2016
).
44.
J. J.
Molina
,
Y.
Nakayama
, and
R.
Yamamoto
, “
Hydrodynamic interactions of self-propelled swimmers
,”
Soft Matter
9
,
4923
4936
(
2013
).
45.
X.
Luo
,
M. R.
Maxey
, and
G. E.
Karniadakis
, “
Smoothed profile method for particulate flows: Error analysis and simulations
,”
J. Comput. Phys.
228
,
1750
1769
(
2009
).
46.
C.
Datt
and
G. J.
Elfring
, “
Active particles in viscosity gradients
,”
Phys. Rev. Lett.
123
,
158006
(
2019
).
47.
B.
Liebchen
,
P.
Monderkamp
,
B.
Ten Hagen
, and
H.
Löwen
, “
Viscotaxis: Microswimmer navigation in viscosity gradients
,”
Phys. Rev. Lett.
120
,
208002
(
2018
).
48.
R.
Dandekar
and
A. M.
Ardekani
, “
Swimming sheet in a viscosity-stratified fluid
,”
J. Fluid Mech.
895
,
R2
(
2020
).
49.
P. S.
Eastham
and
K.
Shoele
, “
Axisymmetric squirmers in stokes fluid with nonuniform viscosity
,”
Phys. Rev. Fluids
5
,
063102
(
2020
).
50.
M. J.
Daniels
,
J. M.
Longland
, and
J.
Gilbart
, “
Aspects of motility and chemotaxis in spiroplasmas
,”
Microbiology
118
,
429
436
(
1980
).
51.
K.
Takabe
,
H.
Tahara
,
M. S.
Islam
,
S.
Affroze
,
S.
Kudo
, and
S.
Nakamura
, “
Viscosity-dependent variations in the cell shape and swimming manner of leptospira
,”
Microbiology
163
,
153
160
(
2017
).
52.
S.
Coppola
and
V.
Kantsler
, “
Green algae scatter off sharp viscosity gradients
,”
Sci. Rep.
11
,
399
(
2021
).
53.
M. R.
Stehnach
,
N.
Waisbord
,
D. M.
Walkama
, and
J. S.
Guasto
, “
Viscophobic turning dictates microalgae transport in viscosity gradients
,”
Nat. Phys.
17
,
926
930
(
2021
).
54.
C. E.
López
,
J.
Gonzalez-Gutierrez
,
F.
Solorio-Ordaz
,
E.
Lauga
, and
R.
Zenit
, “
Dynamics of a helical swimmer crossing viscosity gradients
,”
Phys. Rev. Fluids
6
,
083102
(
2021
).
You do not currently have access to this content.