All previous studies on the aerodynamics of bristled wings in miniature insects are based on continuum flows. However, the diameter of the bristle is very small, and the diameter-based Knudsen number (Kn) is approximately between 0.03 and 0.11, indicating that the flow around the bristle is in the slip-flow regime and rarefaction effect will be present. To investigate how the rarefaction will affect the aerodynamic force and flow field of the bristled wing, we calculated and analyzed the flow around a model bristled wing under two conditions: the continuum flow and the slip flow. The following is shown. Within the range of Kn considered in this study (0.01 ≤ Kn ≤ 0.1), the rarefaction has a very small effect on the aerodynamic force of the bristled wing: it decreases the aerodynamic force by less than 0.5% compared with that of the continuum flow. However, the rarefaction has a significant effect on the contributions of the viscous tangential and normal stress terms to the aerodynamic force: in the continuum flow, the force contribution of the viscous tangential stress is 50.7% and that of the viscous normal stress is zero, whereas in the slip flow, e.g., at Kn = 0.08, the contribution of the viscous tangential stress is only 37.7% and that of the viscous normal stress is 12.9% instead of zero; this is because the rarefaction-induced slip velocity in the slip flow changes the normal derivative of the velocity on the bristle surface compared with that of the continuum flow. Since the rarefaction has only a slight effect on the aerodynamic force, the results on the aerodynamic force of the bristled wing obtained based on continuum flows in previous studies are very good approximations to the correct results.

1.
R.
Dudley
,
The Biomechanics of Insect Flight: Form, Function, Evolution
(
Princeton University Press
,
UK
,
2002
).
2.
A. A.
Polilov
,
At the Size Limit—Effects of Miniaturization in Insects
(
Springer International Publishing AG
,
Cham, Switzerland
,
2016
).
3.
A. Y. L.
Cheer
and
M. A. R.
Koehl
, “
Paddles and rakes: Fluid flow through bristled appendages of small organisms
,”
J. Theor. Biol.
129
,
17
(
1987
).
4.
S.
Sunada
,
H.
Takashima
,
T.
Hattori
,
K.
Yasuda
, and
K.
Kawachi
, “
Fluid-dynamic characteristics of a bristled wing
,”
J. Exp. Biol.
205
,
2737
(
2002
).
5.
S. E.
Farisenkov
,
D.
Kolomenskiy
,
P. N.
Petrov
,
T.
Engels
,
N. A.
Lapina
,
F. O.
Lehmann
,
R.
Onishi
,
H.
Liu
, and
A. A.
Polilov
, “
Novel flight style and light wings boost flight performance of tiny beetles
,”
Nature
602
,
96
(
2022
).
6.
Y.
Jiang
,
P.
Zhao
,
X.
Cai
,
J.
Rong
,
Z.
Dong
,
H.
Chen
,
P.
Wu
,
H.
Hu
,
X.
Jin
,
D.
Zhang
, and
H.
Liu
, “
Bristled-wing design of materials, microstructures, and aerodynamics enables flapping flight in tiny wasps
,”
iScience
25
,
103692
(
2022
).
7.
S. H.
Lee
and
D.
Kim
, “
Aerodynamics of a translating comb-like plate inspired by a fairyfly wing
,”
Phys. Fluids
29
,
081902
(
2017
).
8.
V. T.
Kasoju
,
D. S.
Moen
,
M. P.
Ford
,
T. T.
Ngo
, and
A.
Santhanakrishnan
, “
Interspecific variation in bristle number on forewings of tiny insects does not influence clap-and-fling aerodynamics
,”
J. Exp. Biol.
224
,
239798
(
2021
).
9.
S. K.
Jones
,
Y. J. J.
Yun
,
T. L.
Hedrick
,
B. E.
Griffith
, and
L. A.
Miller
, “
Bristles reduce the force required to 'fling' wings apart in the smallest insects
,”
J. Exp. Biol.
219
,
3759
(
2016
).
10.
D.
Kolomenskiy
,
S.
Farisenkov
,
T.
Engels
,
N. A.
Lapina
,
P.
Petrov
,
F.-O.
Lehmann
,
R.
Onishi
,
H.
Liu
, and
A.
Polilov
, “
Aerodynamic performance of a bristled wing of a very small insect
,”
Exp. Fluids
61
,
194
(
2020
).
11.
S. H.
Lee
,
M.
Lee
, and
D.
Kim
, “
Optimal configuration of a two-dimensional bristled wing
,”
J. Fluid Mech.
888
,
A23
(
2020
).
12.
Y. K.
Wu
,
Y. P.
Liu
, and
M.
Sun
, “
Unsteady aerodynamics of a model bristled wing in rapid acceleration motion
,”
Phys. Fluids
33
,
111902
(
2021
).
13.
S. H.
Lee
and
D.
Kim
, “
Aerodynamic response of a bristled wing in gusty flow
,”
J. Fluid Mech.
913
,
A4
(
2021
).
14.
S. H.
Lee
,
M.
Lahooti
, and
D.
Kim
, “
Aerodynamic characteristics of unsteady gap flow in a bristled wing
,”
Phys. Fluids
30
,
071901
(
2018
).
15.
T.
Engels
,
D.
Kolomenskiy
, and
F. O.
Lehmann
, “
Flight efficiency is a key to diverse wing morphologies in small insects
,”
J. R. Soc. Interface
18
,
20210518
(
2021
).
16.
Y. K.
Wu
,
Y. P.
Liu
, and
M.
Sun
, “
Aerodynamics of two parallel bristled wings in low Reynolds number flow
,”
Sci. Rep.
12
,
10928
(
2022
).
17.
A.
Santhanakrishnan
,
A. K.
Robinson
,
S.
Jones
,
A. A.
Low
,
S.
Gadi
,
T. L.
Hedrick
, and
L. A.
Miller
, “
Clap and fling mechanism with interacting porous wings in tiny insect flight
,”
J. Exp. Biol.
217
,
3898
(
2014
).
18.
V. T.
Kasoju
,
C. L.
Terrill
,
M. P.
Ford
, and
A.
Santhanakrishnan
, “
Leaky flow through simplified physical models of bristled wings of tiny insects during clap and fling
,”
Fluids
3
,
44
(
2018
).
19.
M. P.
Ford
,
V. T.
Kasoju
,
M. G.
Gaddam
, and
A.
Santhanakrishnan
, “
Aerodynamic effects of varying solid surface area of bristled wings performing clap and fling
,”
Bioinspiration Biomimetics
14
,
046003
(
2019
).
20.
V. T.
Kasoju
and
A.
Santhanakrishnan
, “
Aerodynamic interaction of bristled wing pairs in fling
,”
Phys. Fluids
33
,
031901
(
2021
).
21.
H.
Liu
and
H.
Aono
, “
Size effects on insect hovering aerodynamics: an integrated computational study
,”
Bioinspir. Biomim.
4
,
015002
(
2009
).
22.
Q.
Sun
and
I. D.
Boyd
, “
Flat-plate aerodynamics at very low Reynolds number
,”
J. Fluid Mech.
502
,
199
(
2004
).
23.
X.-J.
Gu
,
R. W.
Barber
,
B.
John
, and
D. R.
Emerson
, “
Non-equilibrium effects on flow past a circular cylinder in the slip and early transition regime
,”
J. Fluid Mech.
860
,
654
(
2019
).
24.
Z.
Chai
,
B.
Shi
,
Z.
Guo
, and
J.
Lu
, “
Gas flow through square arrays of circular cylinders with Klinkenberg effect: A lattice Boltzmann study
,”
Commun. Comput. Phys.
8
,
1052
(
2010
).
25.
J.
Ou
and
J.
Chen
, “
Nonlinear transport of rarefied Couette flows from low speed to high speed
,”
Phys. Fluids
32
,
112021
(
2020
).
26.
W.
Liu
and
M.
Sun
, “
Aerodynamics and three-dimensional effect of a translating bristled wing at low Reynolds numbers
,”
Sci. Rep.
12
,
14966
(
2022
).
27.
J. T.
Huber
and
J. S.
Noyes
, “
A new genus and species of fairyfly, Tinkerbella nana (Hymenoptera, Mymaridae), with comments on its sister genus Kikiki, and discussion on small size limits in arthropods
,”
J. Hymen. Res.
32
,
17
(
2013
).
28.
X.
Cheng
and
M.
Sun
, “
Very small insects use novel wing flapping and drag principle to generate the weight-supporting vertical force
,”
J. Fluid Mech.
855
,
646
(
2018
).
29.
Y. Z.
Lyu
,
H. J.
Zhu
, and
M.
Sun
, “
Flapping-mode changes and aerodynamic mechanisms in miniature insects
,”
Phys. Rev. E
99
,
012419
(
2019
).
30.
S.
Colin
, “
Rarefaction and compressibility effects on steady and transient gas flows in microchannels
,”
Microfluid. Nanofluid.
1
,
268
(
2004
).
31.
C.
Shen
,
Rarefied Gas Dynamics: Fundamentals, Simulations and Micro Flows
(
Springer
,
Germany
,
2005
).
32.
D. A.
Lockerby
and
J. M.
Reese
, “
On the modelling of isothermal gas flows at the microscale
,”
J. Fluid Mech.
604
,
235
(
2008
).
33.
N. T. P.
Le
,
C. J.
Greenshields
, and
J. M.
Reese
, “
Evaluation of nonequilibrium boundary conditions for hypersonic rarefied gas flows
,”
Prog. Flight Phys.
3
,
217
230
(
2013
).
34.
A.
Agrawal
and
S. V.
Prabhu
, “
Survey on measurement of tangential momentum accommodation coefficient
,”
J. Vac. Sci. Technol. A
26
,
634
(
2008
).
35.
S.
Kaplun
, “
Low Reynolds number flow past a circular cylinder
,”
Indiana Univ. Math. J.
6
,
595
(
1957
).
36.
K.
Yamamoto
and
K.
Sera
, “
Flow of a rarefied gas past a circular cylinder
,”
Phys. Fluids
28
,
1286
(
1985
).
37.
K.
Morinishi
, “
Numerical simulation for gas microflows using Boltzmann equation
,”
Comput. Fluids
35
,
978
(
2006
).
38.
L.
Zhu
,
S.
Chen
, and
Z.
Guo
, “
dugksFoam: An open source OpenFOAM solver for the Boltzmann model equation
,”
Comput. Phys. Commun.
213
,
155
(
2017
).
You do not currently have access to this content.