Capillary desaturation process was investigated as a function of wetting phase rheological signatures during the injection of Newtonian and non-Newtonian fluids. Two sets of two-phase imbibition flow experiments were conducted on a water-wet sandstone core sample using brine and viscoelastic polymer solutions. During the experiments, a high-resolution micro-computed tomography scanner was employed to directly map pore-level fluid occupancies within the pore space. The results of the experiments revealed that at a given capillary number, the viscoelastic polymer was more efficient than the brine in recovering the non-wetting oil phase. At low capillary numbers, this is attributed to the improved accessibility of the viscoelastic polymer solution to the entrance of pore elements, which suppressed snap-off events and allowed more piston-like and cooperative pore-body filling events to contribute to oil displacement. For intermediate capillary numbers, the onset of elastic turbulence caused substantial desaturation, while at high capillary numbers, the superimposed effects of higher viscous and elastic forces further improved the mobilization of the trapped oil ganglia by the viscoelastic polymer. In the waterflood, however, the mobilization of oil globules was the governing recovery mechanism, and the desaturation process commenced only when the capillary number reached a threshold value. These observations were corroborated with the pore-level fluid occupancy maps produced for the brine and viscoelastic polymer solutions during the experiments. Furthermore, at the intermediate and high capillary numbers, the force balance and pore-fluid occupancies suggested different flow regimes for the non-Newtonian viscoelastic polymer. These regions are categorized in this study as elastic-capillary- and viscoelastic-dominated flow regimes, different from viscous-capillary flow conditions that are dominant during the flow of Newtonian fluids. Moreover, we have identified novel previously unreported pore-scale displacement events that take place during the flow of viscoelastic fluids in a natural heterogeneous porous medium. These events, including coalescence, fragmentation, and re-entrapment of oil ganglia, occurred before the threshold of oil mobilization was reached under the elastic-capillary-dominated flow regime. In addition, we present evidence for lubrication effects at the pore level due to the elastic properties of the polymer solution. Furthermore, a comparison of capillary desaturation curves generated for the Newtonian brine and non-Newtonian viscoelastic polymer revealed that the desaturation process was more significant for the viscoelastic polymer than for the brine. Finally, the analysis of trapped oil clusters showed that the ganglion size distribution depends on both the capillary number and the rheological properties of fluids.

1.
R.
Lenormand
,
C.
Zarcone
, and
A.
Sarr
, “
Mechanisms of the displacement of one fluid by another in a network of capillary ducts
,”
J. Fluid Mech.
135
,
337
353
(
1983
).
2.
M. J.
Blunt
,
Multiphase Flow in Permeable Media: A Pore-Scale Perspective
(
Cambridge University Press
,
2017
).
3.
F. A. L.
Dullien
,
Porous Media: Fluid Transport and Pore Structure
,
2nd ed
. (
Academic Press
,
San Diego, CA
,
2012
).
4.
A. I. A.
Mohamed
, “
Entrapment and mobilization dynamics during capillary desaturation in natural porous media
,” Doctoral dissertation (
University of Wyoming
,
2021
).
5.
G. L.
Stegemeier
, “
Mechanisms of entrapment and mobilization of oil in porous media
,”
Improved Oil Recovery by Surfactant Polymer Flooding
(
Academic Press
,
New York, NY
,
1997
), pp.
55
91
.
6.
J. J.
Taber
, “
Dynamic and static forces required to remove a discontinuous oil phase from porous media containing both oil and water
,”
Soc. Pet. Eng. J.
9
(
01
),
3
12
(
1969
).
7.
A.
Abrams
, “
The influence of fluid viscosity, interfacial tension, and flow velocity on residual oil saturation left by waterflood
,”
Soc. Pet. Eng. J.
15
(
05
),
437
447
(
1975
).
8.
D. G.
Avraam
and
A. C.
Payatakes
, “
Flow regimes and relative permeabilities during steady-state two-phase flow in porous media
,”
J. Fluid Mech.
293
(
1
),
207
236
(
1995
).
9.
S.
Youssef
,
E.
Rosenberg
,
H.
Deschamps
,
R.
Oughanem
,
E.
Maire
, and
R.
Mokso
, “
Oil ganglia dynamics in natural porous media during surfactant flooding captured by ultra-fast x-ray microtomography
,” in
Proceedings of the Symposium of the Society of Core Analysts
,
Avignon, France
(
2014
).
10.
G. D.
Yadav
and
G.
Mason
, “
The onset of blob motion in a random sphere packing caused by flow of the surrounding liquid
,”
Chem. Eng. Sci.
38
(
9
),
1461
1465
(
1983
).
11.
I.
Chatzis
and
N. R.
Morrow
, “
Correlation of capillary number relationships for sandstone
,”
Soc. Pet. Eng. J.
24
(
5
),
555
562
(
1984
).
12.
R.
Hilfer
and
P. E.
Øren
, “
Dimensional analysis of pore scale and field scale immiscible displacement
,”
Transp. Porous Media
22
(
1
),
53
72
(
1996
).
13.
R. T.
Armstrong
,
A.
Georgiadis
,
H.
Ott
,
D.
Klemin
, and
S.
Berg
, “
Critical capillary number: Desaturation studied with fast x-ray computed microtomography
,”
Geophys. Res. Lett.
41
(
1
),
55
60
, https://doi.org/10.1002/2013GL058075 (
2014
).
14.
J. J.
Taber
,
J. C.
Kirby
, and
F. U.
Schroeder
, “
Studies on the displacement of residual oil: Viscosity and permeability effects
,” in
Proceedings of the AIChE Symposium Series
(American Institute of Chemical Engineers,
1973
), pp.
53
56
.
15.
A. I. A.
Mohamed
,
M.
Khishvand
, and
M.
Piri
, “
A pore-scale experimental investigation of process-dependent capillary desaturation
,”
Adv. Water Resour.
144
,
103702
(
2020
).
16.
M.
Prodanović
,
W. B.
Lindquist
, and
R. S.
Seright
, “
3D image-based characterization of fluid displacement in a Berea core
,”
Adv. Water. Resour.
30
(
2
),
214
226
(
2007
).
17.
I.
Chatzis
and
F. A. L.
Dullien
, “
Dynamic immiscible displacement mechanisms in pore doublets: Theory versus experiment
,”
J. Colloid Interface Sci.
91
(
1
),
199
222
(
1983
).
18.
T.
Sochi
, “
Non-Newtonian flow in porous media
,”
Polymer
51
(
22
),
5007
5023
(
2010
).
19.
S.
Iglauer
,
A.
Paluszny
,
C. H.
Pentland
, and
M. J.
Blunt
, “
Residual CO2 imaged with x‐ray micro‐tomography
,”
Geophys. Res. Lett.
38
(
21
),
L21403
, https://doi.org/10.1029/2011GL049680 (
2011
).
20.
R. T.
Armstrong
,
J. E.
McClure
,
M. A.
Berrill
,
M.
Rücker
,
S.
Schlüter
, and
S.
Berg
, “
Beyond Darcy's law: The role of phase topology and ganglion dynamics for two-fluid flow
,”
Phys. Rev. E
94
(
4
),
043113
(
2016
).
21.
T.
Pak
,
I. B.
Butler
,
S.
Geiger
,
M. I. J.
van Dijke
, and
K. S.
Sorbie
, “
Droplet fragmentation: 3D imaging of a previously unidentified pore-scale process during multiphase flow in porous media
,”
Proc. Natl. Acad. Sci. U.S.A.
112
(
7
),
1947
1952
(
2015
).
22.
S. S.
Datta
,
T. S.
Ramakrishnan
, and
D. A.
Weitz
, “
Mobilization of a trapped non-wetting fluid from a three-dimensional porous medium
,”
Phys. Fluids
26
(
2
),
22002
(
2014
).
23.
A. L.
Herring
,
E. J.
Harper
,
L.
Andersson
,
A.
Sheppard
,
B. K.
Bay
, and
D.
Wildenschild
, “
Effect of fluid topology on residual nonwetting phase trapping: Implications for geologic CO2 sequestration
,”
Adv. Water Resour.
62
,
47
58
(
2013
).
24.
M.
Khishvand
,
M.
Akbarabadi
, and
M.
Piri
, “
Micro-scale experimental investigation of the effect of flow rate on trapping in sandstone and carbonate rock samples
,”
Adv. Water Resour.
94
,
379
399
(
2016
).
25.
S.
Berg
,
R. T.
Armstrong
,
A.
Georgiadis
,
H.
Ott
,
A.
Schwing
,
R.
Neiteler
et al, “
Onset of oil mobilization and nonwetting-phase cluster-size distribution
,”
Petrophysics
56
,
15
22
(
2015
).
26.
M.
Rücker
,
S.
Berg
,
R. T.
Armstrong
,
A.
Georgiadis
,
H.
Ott
,
A.
Schwing
et al, “
From connected pathway flow to ganglion dynamics
,”
Geophys. Res. Lett.
42
(
10
),
3888
3894
, https://doi.org/10.1002/2015GL064007 (
2015
).
27.
A. T.
Krummel
,
S. S.
Datta
,
S.
Münster
, and
D. A.
Weitz
, “
Visualizing multiphase flow and trapped fluid configurations in a model three‐dimensional porous medium
,”
AIChE J.
59
(
3
),
1022
1029
(
2013
).
28.
A. C.
Payatakes
,
K. M.
Ng
, and
R. W.
Flumerfelt
, “
Oil ganglion dynamics during immiscible displacement: Model formulation
,”
AIChE J.
26
(
3
),
430
443
(
1980
).
29.
K. M.
Ng
,
H. T.
Davis
, and
L. E.
Scriven
, “
Visualization of blob mechanics in flow through porous media
,”
Chem. Eng. Sci.
33
(
8
),
1009
1017
(
1978
).
30.
S.
Youssef
,
H.
Deschamps
,
J.
Dautriat
,
E.
Rosenberg
,
R.
Oughanem
,
E.
Maire
et al, “
4D imaging of fluid flow dynamics in natural porous media with ultra-fast x-ray microtomography
,” in
Proceedings of the International Symposium of the SCA
,
Napa Valley, CA
(The Society of Core Analysts,
2013
), pp.
1
12
.
31.
W.
Rose
and
P. A.
Witherspoon
, Jr.
,
Studies of Waterflood Performance, Vol. 2: Trapping Oil in a Pore Doublet
(Illinois State Geological Survey,
1956
), Circ. No. 224.
32.
J. G.
Roof
, “
Snap-off of oil droplets in water-wet pores
,”
Soc. Pet. Eng. J.
10
(
01
),
85
90
(
1970
).
33.
A.
Georgiadis
,
S.
Berg
,
A.
Makurat
,
G.
Maitland
, and
H.
Ott
, “
Pore-scale micro-computed-tomography imaging: Nonwetting-phase cluster-size distribution during drainage and imbibition
,”
Phys. Rev. E
88
(
3
),
33002
(
2013
).
34.
S.
Berg
,
H.
Ott
,
S. A.
Klapp
,
A.
Schwing
,
R.
Neiteler
,
N.
Brussee
et al, “
Real-time 3D imaging of Haines jumps in porous media flow
,”
Proc. Natl. Acad. Sci.
110
(
10
),
3755
3759
(
2013
).
35.
P.
Qi
,
D. H.
Ehrenfried
,
H.
Koh
, and
M. T.
Balhoff
, “
Reduction of residual oil saturation in sandstone cores by use of viscoelastic polymers
,”
Soc. Pet. Eng. J.
22
(
02
),
447
458
(
2017
).
36.
A.
Clarke
,
A. M.
Howe
,
J.
Mitchell
,
J.
Staniland
, and
L. A.
Hawkes
, “
How viscoelastic-polymer flooding enhances displacement efficiency
,”
Soc. Pet. Eng. J.
21
(
03
),
675
687
(
2016
).
37.
D.
Kawale
,
E.
Marques
,
P. L. J.
Zitha
,
M. T.
Kreutzer
,
W. R.
Rossen
, and
P. E.
Boukany
, “
Elastic instabilities during the flow of hydrolyzed polyacrylamide solution in porous media: Effect of pore-shape and salt
,”
Soft Matter
13
(
4
),
765
775
(
2017
).
38.
S.
De
,
P.
Krishnan
,
J.
Van Der Schaaf
,
J. A. M.
Kuipers
,
E.
Peters
, and
J. T.
Padding
, “
Viscoelastic effects on residual oil distribution in flows through pillared microchannels
,”
J. Colloid Interface Sci.
510
,
262
271
(
2018
).
39.
A.
Clarke
,
A. M.
Howe
,
J.
Mitchell
,
J.
Staniland
,
L.
Hawkes
, and
K.
Leeper
, “
Mechanism of anomalously increased oil displacement with aqueous viscoelastic polymer solutions
,”
Soft Matter
11
(
18
),
3536
3541
(
2015
).
40.
S.
Parsa
,
E.
Santanach-Carreras
,
L.
Xiao
, and
D. A.
Weitz
, “
Origin of anomalous polymer-induced fluid displacement in porous media
,”
Phys. Rev. Fluids
5
(
2
),
22001
(
2020
).
41.
P.
Shakeri
,
M.
Jung
, and
R.
Seemann
, “
Effect of elastic instability on mobilization of capillary entrapments
,”
Phys. Fluids
33
(
11
),
113102
(
2021
).
42.
C.
Xie
,
P.
Qi
,
K.
Xu
,
J.
Xu
, and
M. T.
Balhoff
, “
Oscillative trapping of a droplet in a converging channel induced by elastic instability
,”
Phys. Rev. Lett.
128
(
5
),
54502
(
2022
).
43.
Y.
Du
,
K.
Xu
,
L.
Mejia
, and
M.
Balhoff
, “
A coreflood‐on‐a‐chip study of viscoelasticity's effect on reducing residual saturation in porous media
,”
Water Resour. Res.
57
(
8
),
e2021WR029688
, https://doi.org/10.1029/2021WR029688 (
2021
).
44.
J.
Mitchell
,
K.
Lyons
,
A. M.
Howe
, and
A.
Clarke
, “
Viscoelastic polymer flows and elastic turbulence in three-dimensional porous structures
,”
Soft Matter
12
(
2
),
460
468
(
2016
).
45.
A.
Groisman
and
V.
Steinberg
, “
Elastic turbulence in a polymer solution flow
,”
Nature
405
(
6782
),
53
55
(
2000
).
46.
A.
Groisman
and
S. R.
Quake
, “
A microfluidic rectifier: Anisotropic flow resistance at low Reynolds numbers
,”
Phys. Rev. Lett.
92
(
9
),
94501
(
2004
).
47.
A. N.
Morozov
and
W.
van Saarloos
, “
An introductory essay on subcritical instabilities and the transition to turbulence in visco-elastic parallel shear flows
,”
Phys. Rep.
447
(
3–6
),
112
143
(
2007
).
48.
M.-A.
Fardin
and
S.
Lerouge
, “
Flows of living polymer fluids
,”
Soft Matter
10
(
44
),
8789
8799
(
2014
).
49.
G. H.
McKinley
, “
Dimensionless groups for understanding free surface flows of complex fluids
,” HML Report Number 05-P-05 (
MIT
,
2005
).
50.
R. J.
Poole
, “
The Deborah and Weissenberg numbers
,”
Rheol. Bull.
53
(
2
),
32
39
(
2012
).
51.
Z. T.
Karpyn
,
A. S.
Grader
, and
P. M.
Halleck
, “
Visualization of fluid occupancy in a rough fracture using micro-tomography
,”
J. Colloid Interface Sci.
307
(
1
),
181
187
(
2007
).
52.
C. J.
Landry
,
Z. T.
Karpyn
, and
M.
Piri
, “
Pore‐scale analysis of trapped immiscible fluid structures and fluid interfacial areas in oil‐wet and water‐wet bead packs
,”
Geofluids
11
(
2
),
209
227
(
2011
).
53.
D.
Wildenschild
and
A. P.
Sheppard
, “
X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems
,”
Adv. Water Resour.
51
,
217
246
(
2013
).
54.
B.
Zhang
,
A. I. A.
Mohamed
,
L.
Goual
, and
M.
Piri
, “
Pore-scale experimental investigation of oil recovery enhancement in oil-wet carbonates using carbonaceous nanofluids
,”
Sci. Rep.
10
,
17539
(
2020
).
55.
A.
Zankoor
,
M.
Khishvand
,
A.
Mohamed
,
R.
Wang
, and
M.
Piri
, “
In-situ capillary pressure and wettability in natural porous media: Multi-scale experimentation and automated characterization using x-ray images
,”
J. Colloid Interface Sci.
603
,
356
369
(
2021
).
56.
D.
Wang
,
J.
Cheng
,
Q.
Yang
,
G.
Wenchao
,
L.
Qun
, and
F.
Chen
, “
Viscous-elastic polymer can increase microscale displacement efficiency in cores
,” in
Proceedings of the SPE Annual Technical Conference and Exhibition
(
Society of Petroleum Engineers
,
Dallas, TX
,
2000
).
57.
H.
Xia
,
D.
Wang
,
G.
Wang
, and
J.
Wu
, “
Effect of polymer solution viscoelasticity on residual oil
,”
Pet. Sci. Technol.
26
(
4
),
398
412
(
2008
).
58.
M. Z.
Erincik
,
P.
Qi
,
M. T.
Balhoff
, and
G. A.
Pope
, “
New method to reduce residual oil saturation by polymer flooding
,”
Soc. Pet. Eng. J.
23
(
05
),
1944
1956
(
2018
).
59.
D. G.
Wreath
, “
A study of polymerflooding and residual oil saturation
,” Doctoral dissertation (
University of Texas at Austin
,
1989
).
60.
M. S.
Azad
and
J. J.
Trivedi
, “
Quantification of the viscoelastic effects during polymer flooding: A critical review
,”
Soc. Pet. Eng. J.
24
(
06
),
2731
2757
(
2019
).
61.
M. S.
Azad
, “
Characterization of nonlinear viscoelastic properties of enhanced oil recovery polymer systems using steady-shear rheometry
,”
Soc. Pet. Eng. J.
(published online).
62.
J.
Jin
,
P.
Qi
,
K.
Mohanty
, and
M.
Balhoff
, “
Experimental investigation of the effect of polymer viscoelasticity on residual saturation of low viscosity oils
,” in
Proceedings of the SPE Symposium on Improved Oil Recovery
, 31 August–4 September (
Society of Petroleum Engineers
,
Tulsa, OK
,
2020
).
63.
A. I.
Mohamed
,
M.
Khishvand
, and
M.
Piri
, “
The role of injection fluid elasticity in microscopic displacement efficiency of residual non-wetting phase: An in-situ experimental investigation
,”
Fuel
333
,
126180
(
2023
).
64.
T. S.
Urbissinova
and
E.
Kuru
, “
Effect of elasticity during viscoelastic polymer flooding: A possible mechanism of increasing the sweep efficiency
,”
J. Can. Pet. Technol.
49
(
12
),
49
56
(
2010
).
65.
D. H.
Ehrenfried
, “
Impact of viscoelastic polymer flooding on residual oil saturation in sandstones
,” Doctoral dissertation (
University of Texas at Austain
,
2013
).
66.
T.
Clemens
,
M.
Deckers
,
M.
Kornberger
,
T.
Gumpenberger
, and
M.
Zechner
, “
Polymer solution injection–near wellbore dynamics and displacement efficiency, pilot test results, Matzen Field, Austria
,” in
Proceedings of the EAGE Annual Conference and Exhibition
(
Society of Petroleum Engineers
,
London, UK
,
2013
).
67.
A.
Laoroongroj
,
T.
Gumpenberger
, and
T.
Clemens
, “
Polymer flood incremental oil recovery and efficiency in layered reservoirs including non-Newtonian and viscoelastic effects
,” in
Proceedings of the SPE Annual Technical Conference and Exhibition
(
Society of Petroleum Engineers
,
Amsterdam, The Netherlands
,
2014
).
68.
E. C.
Vermolen
,
M. J.
Haasterecht
, and
S. K.
Masalmeh
, “
A systematic study of the polymer visco-elastic effect on residual oil saturation by core flooding
,” in
Proceedings of the SPE EOR Conference at Oil and Gas West Asia
(
Society of Petroleum Engineers
,
Muscat, Oman
,
2014
).
69.
H. S.
Koh
, “
Experimental investigation of the effect of polymers on residual oil saturation
,” Doctoral dissertation (
University of Texas at Austin
,
2015
).
70.
A. O.
Almansour
,
A. A.
AlQuraishi
,
S. N.
AlHussinan
, and
H. Q.
AlYami
, “
Efficiency of enhanced oil recovery using polymer-augmented low salinity flooding
,”
J. Pet. Explor. Prod. Technol.
7
(
4
),
1149
1158
(
2017
).
71.
K.
Sandengen
,
K.
Melhuus
, and
A.
Kristoffersen
, “
Polymer ‘viscoelastic effect;’ does it reduce residual oil saturation
,”
J. Pet. Sci. Eng.
153
,
355
363
(
2017
).
72.
M. T.
Szabo
, “
Some aspects of polymer retention in porous media using a C14-tagged hydrolyzed polyacrylamide
,”
Soc. Pet. Eng. J.
15
(
04
),
323
337
(
1975
).
73.
J. G.
Dominguez
and
G. P.
Willhite
, “
Retention and flow characteristics of polymer solutions in porous media
,”
Soc. Pet. Eng. J.
17
(
02
),
111
121
(
1977
).
74.
J. J.
Sheng
,
Modern Chemical Enhanced Oil Recovery: Theory and Practice
(
Gulf Professional Publishing
,
2010
).
75.
K. S.
Sorbie
,
Polymer-Improved Oil Recovery
(
Springer Science and Business Media
,
2013
).
76.
A.
Goebel
and
K.
Lunkenheimer
, “
Interfacial tension of the water/n-alkane interface
,”
Langmuir
13
(
2
),
369
372
(
1997
).
77.
S.
Saraji
,
L.
Goual
,
M.
Piri
, and
H.
Plancher
, “
Wettability of supercritical carbon dioxide/water/quartz systems: Simultaneous measurement of contact angle and interfacial tension at reservoir conditions
,”
Langmuir
29
(
23
),
6856
6866
(
2013
).
78.
S. M.
Hassanizadeh
and
W. G.
Gray
, “
Thermodynamic basis of capillary pressure in porous media
,”
Water Resour. Res.
29
(
10
),
3389
3405
, https://doi.org/10.1029/93WR01495 (
1993
).
79.
M.
Khishvand
,
A. H.
Alizadeh
, and
M.
Piri
, “
In-situ characterization of wettability and pore-scale displacements during two-and three-phase flow in natural porous media
,”
Adv. Water Resour.
97
,
279
298
(
2016
).
80.
R.
Ehrlich
,
H. H.
Hasiba
, and
P.
Raimondi
, “
Alkaline waterflooding for wettability alteration-evaluating a potential field application
,”
J. Pet. Technol.
26
(
12
),
1335
1343
(
1974
).
81.
N. R.
Morrow
and
B.
Songkran
, “
Effect of viscous and buoyancy forces on nonwetting phase trapping in porous media
,”
Surface Phenomena in Enhanced Oil Recovery
(
Springer
,
Boston, MA
,
1981
), pp.
387
411
.
82.
L.
Anton
and
R.
Hilfer
, “
Trapping and mobilization of residual fluid during capillary desaturation in porous media
,”
Phys. Rev. E
59
(
6
),
6819
(
1999
).
83.
R.
Lenormand
,
E.
Touboul
, and
C.
Zarcone
, “
Numerical models and experiments on immiscible displacements in porous media
,”
J. Fluid Mech.
189
,
165
187
(
1988
).
84.
M. J.
Blunt
,
M. D.
Jackson
,
M.
Piri
, and
P. H.
Valvatne
, “
Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow
,”
Adv. Water Resour.
25
(
8–12
),
1069
1089
(
2002
).
85.
M.
Singh
and
K. K.
Mohanty
, “
Dynamic modeling of drainage through three-dimensional porous materials
,”
Chem. Eng. Sci.
58
(
1
),
1
18
(
2003
).
86.
S. S.
Datta
and
D. A.
Weitz
, “
Drainage in a model stratified porous medium
,”
Europhys. Lett.
101
(
1
),
14002
(
2013
).
87.
R. P.
Mayer
and
R. A.
Stowe
, “
Mercury porosimetry—Breakthrough pressure for penetration between packed spheres
,”
J. Colloid Sci.
20
(
8
),
893
911
(
1965
).
88.
K. E.
Thompson
,
C. S.
Willson
,
C. D.
White
,
S.
Nyman
,
J. P.
Bhattacharya
, and
A. H.
Reed
, “
Application of a new grain-based reconstruction algorithm to microtomography images for quantitative characterization and flow modeling
,”
Soc. Pet. Eng. J.
13
(
02
),
164
176
(
2008
).
89.
C. L.
Perrin
,
P. M. J.
Tardy
,
K. S.
Sorbie
, and
J. C.
Crawshaw
, “
Experimental and modeling study of Newtonian and non-Newtonian fluid flow in pore network micromodels
,”
J. Colloid Interface Sci.
295
(
2
),
542
550
(
2006
).
90.
A. F.
Morais
,
H.
Seybold
,
H. J.
Herrmann
, and
J. S.
Andrade
, Jr.
, “
Non-Newtonian fluid flow through three-dimensional disordered porous media
,”
Phys. Rev. Lett.
103
(
19
),
194502
(
2009
).
91.
J. J.
Sheng
,
B.
Leonhardt
, and
N.
Azri
, “
Status of polymer-flooding technology
,”
J. Can. Pet. Technol.
54
(
02
),
116
126
(
2015
).
92.
M.
Delshad
,
D. H.
Kim
,
O. A.
Magbagbeola
,
C.
Huh
,
G. A.
Pope
, and
F.
Tarahhom
, “
Mechanistic interpretation and utilization of viscoelastic behavior of polymer solutions for improved polymer-flood efficiency
,” in
Proceedings of the SPE Symposium on Improved Oil Recovery
(
Society of Petroleum Engineers
,
Tulsa, OK
,
2008
).
93.
E. M.
Ekanem
,
S.
Berg
,
S.
De
,
A.
Fadili
,
T.
Bultreys
,
M.
Rücker
et al, “
Signature of elastic turbulence of viscoelastic fluid flow in a single pore throat
,”
Phys. Rev. E
101
(
4
),
42605
(
2020
).
94.
C. A.
Browne
,
A.
Shih
, and
S. S.
Datta
, “
Bistability in the unstable flow of polymer solutions through pore constriction arrays
,”
J. Fluid Mech.
890
,
A2
(
2020
).
95.
C. A.
Browne
and
S. S.
Datta
, “
Elastic turbulence generates anomalous flow resistance in porous media
,”
Sci. Adv.
7
(
45
),
eabj2619
(
2021
).
96.
N. C.
Wardlaw
and
L.
Yu
, “
Fluid topology, pore size and aspect ratio during imbibition
,”
Transp. Porous Media
3
(
1
),
17
34
(
1988
).
97.
M.
Piri
and
M. J.
Blunt
, “
Three-dimensional mixed-wet random pore-scale network modeling of two-and three-phase flow in porous media. I. Model description
,”
Phys. Rev. E
71
(
2
),
26301
(
2005
).
98.
A.
Aghaei
and
M.
Piri
, “
Direct pore-to-core up-scaling of displacement processes: Dynamic pore network modeling and experimentation
,”
J. Hydrol.
522
,
488
509
(
2015
).
99.
A.
Zolfaghari
and
M.
Piri
, “
Pore-scale network modeling of three-phase flow based on thermodynamically consistent threshold capillary pressures. I. Cusp formation and collapse
,”
Transp. Porous Media
116
(
3
),
1093
1137
(
2017
).
100.
W.
Rose
and
P. A.
Witherspoon
,
Studies of Waterflood Performance
(
Division of the Illinois State Geological Survey
,
1956
).
101.
K.
Singh
,
H.
Menke
,
M.
Andrew
,
Q.
Lin
,
C.
Rau
,
M. J.
Blunt
et al, “
Dynamics of snap-off and pore-filling events during two-phase fluid flow in permeable media
,”
Sci. Rep.
7
(
1
),
5192
(
2017
).
102.
V.
Alvarado
,
M. M.
Bidhendi
,
G.
Garcia-Olvera
,
B.
Morin
, and
J. S.
Oakey
, “
Interfacial visco-elasticity of crude oil-brine: An alternative EOR mechanism in smart waterflooding
,” in
Proceedings of the SPE on Improved Oil Recovery Symposium
(
Society of Petroleum Engineers
,
Tulsa, OK
,
2014
).
103.
B.
Morin
,
Y.
Liu
,
V.
Alvarado
, and
J.
Oakey
, “
A microfluidic flow focusing platform to screen the evolution of crude oil–brine interfacial elasticity
,”
Lab Chip
16
(
16
),
3074
3081
(
2016
).
104.
M. M.
Bidhendi
,
G.
Garcia-Olvera
,
B.
Morin
,
J. S.
Oakey
, and
V.
Alvarado
, “
Interfacial viscoelasticity of crude oil/brine: An alternative enhanced-oil-recovery mechanism in smart waterflooding
,”
Soc. Pet. Eng. J.
23
(
03
),
803
818
(
2018
).
105.
F.
Guo
and
S. A.
Aryana
, “
An experimental investigation of flow regimes in imbibition and drainage using a microfluidic platform
,”
Energies
12
(
7
),
1390
(
2019
).
106.
D. W.
Carlson
,
K.
Toda-Peters
,
A. Q.
Shen
, and
S. J.
Haward
, “
Volumetric evolution of elastic turbulence in porous media
,”
J. Fluid Mech.
950
,
A36
(
2022
).
107.
M. S.
Azad
and
J. J.
Trivedi
, “
Quantification of Sor reduction during polymer flooding using extensional capillary number
,”
Soc. Pet. Eng. J.
26
(
03
),
1469
1498
(
2021
).
108.
R.
Juanes
,
E. J.
Spiteri
,
F. M.
Orr
, Jr.
, and
M. J.
Blunt
, “
Impact of relative permeability hysteresis on geological CO2 storage
,”
Water Resour. Res.
42
(
12
), W12418, https://doi.org/10.1029/2005WR004806 (
2006
).
109.
N. R.
Morrow
,
I.
Chatzis
, and
J. J.
Taber
, “
Entrapment and mobilization of residual oil in bead packs
,”
SPE Reservoir Eng.
3
(
03
),
927
934
(
1988
).
110.
M.
Andrew
,
B.
Bijeljic
, and
M.
Blunt
, “
Reservoir condition pore scale imaging of the capillary trapping of CO2
,”
Energy Proc.
63
,
5427
5434
(
2014
).
111.
D.
Wilkinson
, “
Percolation effects in immiscible displacement
,”
Phys. Rev. A
34
(
2
),
1380
(
1986
).
112.
I.
Chatzis
,
M. S.
Kuntamukkula
, and
N. R.
Morrow
, “
Effect of capillary number on the microstructure of residual oil in strongly water-wet sandstones
,”
SPE Reservoir Eng.
3
(
03
),
902
912
(
1988
).
113.
K. M.
Ng
and
A. C.
Payatakes
, “
Stochastic simulation of the motion, breakup and stranding of oil ganglia in water‐wet granular porous media during immiscible displacement
,”
AIChE J.
26
(
3
),
419
429
(
1980
).

Supplementary Material

You do not currently have access to this content.