In this study, a two-dimensional numerical simulation is conducted to investigate the characteristics of gas flow induced by an electrohydrodynamic (EHD) pump with needle-ring-net electrodes. A needle electrode and a ring electrode are used as the high-voltage electrode, and a net electrode is used as the grounding one. The electric field distribution, space charge distribution, and flow field distribution behaviors were simulated and analyzed in detail. The simulation results were in good agreement with the experimentally measured data. The influence of key parameters, including applied voltage, electrode configurations, and channel diameter, on the flow characteristics and energy efficiency of an EHD pump was studied systematically. The results showed that the most pronounced electric field strength locates at the region around the needle tip and the edge of the ring electrode, while there is no obvious evidence showing more space charge located at the vicinity of the ring electrode. The airflow velocity at the net pores is higher than that at the central circular hole. Flow velocity and energy conversion efficiency of the pump monotonically increase with applied voltage. A combinational effect of tip-ring distance, ring inner diameter, and pump channel size should be considered to design the EHD pump to achieve maximum efficiency. The results also showed that an optimal energy conversion efficiency of 4.26% can be achieved, which is higher than most of the other EHD pumps (0.11–2.56%). The proposed model can serve as an efficient tool for the design and optimization of the needle-ring-net EHD gas pumps.

1.
H.
Xu
,
Y.
He
,
K. L.
Strobel
,
C. K.
Gilmore
,
S. P.
Kelley
,
C. C.
Hennick
,
T.
Sebastian
,
M. R.
Woolston
,
D. J.
Perreault
, and
S. R. H.
Barrett
, “
Flight of an aeroplane with solid-state propulsion
,”
Nature
563
,
532
(
2018
).
2.
L. C.
David
,
J. T.
Varghese
, and
S. R. N. A.
Syamala
, “
Ion propulsion technology: NASA's evolutionary xenon thruster (NEXT) development and long duration tests results and its applications
,” in
Advances in Science and Engineering Technology International Conferences (ASET)
(
IEEE
,
2020
).
3.
F. C.
Lai
, “
EHD gas pumping—A concise review of recent development
,”
J. Electrostat.
106
,
103469
(
2020
).
4.
Z. L.
Du
,
J. Y.
Huang
,
Q.
Liu
,
R.
Deepak Selvakumar
, and
J.
Wu
, “
Numerical investigation on electrohydrodynamic conduction pumping with an external flow
,”
Phys. Fluids
33
(
12
),
123609
(
2021
).
5.
L.
Li
,
S. J.
Lee
,
W.
Kim
, and
D.
Kim
, “
An empirical model for ionic wind generation by a needle-to-cylinder dc corona discharge
,”
J. Electrostat.
73
,
125
(
2015
).
6.
J.
Mizeraczyk
,
A.
Berendt
, and
J.
Podlinski
, “
Temporal and spatial evolution of EHD particle flow onset in air in a needle-to-plate negative DC corona discharge
,”
J. Phys. D
49
,
205203
(
2016
).
7.
M.
Rickard
,
D.
Dunn-Rankin
,
F.
Weinberg
, and
F.
Carleton
, “
Maximizing ion-driven gas flows
,”
J. Electrostat.
64
,
368
(
2006
).
8.
E.
Moreau
and
G.
Touchard
, “
Enhancing the mechanical efficiency of electric wind in corona discharges
,”
J. Electrostat.
66
,
39
(
2008
).
9.
H.
Tsubone
,
J.
Ueno
,
B.
Komeili
,
S.
Minami
,
G. D.
Harvel
,
K.
Urashima
,
C. Y.
Ching
, and
J. S.
Chang
, “
Flow characteristics of dc wire-non-parallel plate electrohydrodynamic gas pumps
,”
J. Electrostat.
66
,
115
(
2008
).
10.
N.
Takeuchi
,
K.
Yasuoka
, and
J.-S.
Chang
, “
Wire-rod type electrohydrodynamic gas pumps with and without insulation cover over corona wire
,”
IEEE Trans. Dielectr. Electr. Insul.
18
,
801
(
2011
).
11.
A. A.
Ramadhan
,
N.
Kapur
,
J. L.
Summers
, and
H. M.
Thompson
, “
Numerical development of EHD cooling systems for laptop applications
,”
Appl. Therm. Eng.
139
,
144
(
2018
).
12.
N. E.
Jewell-Larsen
,
H.
Ran
,
Y.
Zhang
,
M. K.
Schwiebert
,
K. A. H.
Tessera
, and
A. V.
Mamishev
,
Electrohydrodynamic (EHD) Cooled Laptop
(
IEEE
,
San Jose, CA
,
2009
).
13.
G.
Chen
and
A. S.
Mujumdar
, “
Application of electrical fields in dewatering and drying
,”
Dev. Chem. Eng. Miner. Process.
10
,
429
(
2002
).
14.
A.
Martynenko
and
T.
Kudra
, “
Electrically-induced transport phenomena in EHD drying—A review
,”
Trends Food Sci. Technol.
54
,
63
(
2016
).
15.
E.
Moreau
, “
Airflow control by non-thermal plasma actuators
,”
J. Phys. D
40
,
605
(
2007
).
16.
A. K. M. M. H.
Mazumder
and
F. C.
Lai
,
Performance of a Multiple Stage EHD Gas Pump in a Square Channel
(
American Society of Mechanical Engineers Digital Collection
,
2012
).
17.
Y. T.
Birhane
,
S. C.
Lin
, and
F. C.
Lai
, “
Flow characteristics of a single stage EHD gas pump in circular tube
,”
J. Electrostat.
76
,
8
17
(
2015
).
18.
J. H.
Lin
,
S. C.
Lin
, and
F. C.
Lai
, “
Performance of an electrohydrodynamic gas pump fitted within a nozzle
,”
J. Electrostat.
91
,
1–8
(
2018
).
19.
Y. J.
Chang
,
J. C.
Peng
,
S. C.
Lin
, and
F. C.
Lai
, “
Flow induced by an EHD gas pump with secondary emitting electrodes
,”
J. Electrost.
105
,
103438
(
2020
).
20.
Y. T.
Birhane
,
S. C.
Lin
, and
F. C.
Lai
, “
Effect of electrode length on the performance of EHD gas pump
,”
Appl. Mech. Mater.
598
,
355
(
2014
).
21.
J.
Moon
,
J.
Jung
, and
S.
Gum
, “
The effect of a strip-type third electrode of a wire-plate type nonthermal plasma reactor on corona discharge and ozone generation characteristics
,”
Int. J. Plasma Environ. Sci. Technol.
2
(
1
),
26
33
(
2008
).
22.
M.
Jae-Duk
,
H.
Deok-hyun
, and
G.
Sang-Taek
, “
An EHD gas pump utilizing a ring/needle electrode
,”
IEEE Trans. Dielectr. Electr. Insul.
16
,
352
(
2009
).
23.
Y.
Birhane
,
M. W.
Woldemariam
, and
F.
Lai
, “
Numerical study of corona jet produced from a circular tube fitted with a nozzle
,”
IEEE Trans. Ind. Appl.
58
,
2444
(
2022
).
24.
W.
Qiu
,
L.
Xia
,
L.
Yang
,
Q.
Zhang
,
L.
Xiao
, and
L.
Chen
, “
Experimental study on the velocity and efficiency characteristics of a serial staged needle array-mesh type EHD gas pump
,”
Plasma Sci. Technol.
13
,
693
(
2011
).
25.
W.
Qiu
,
L.
Xia
,
X.
Tan
, and
L.
Yang
, “
The velocity characteristics of a serial-staged EHD gas pump in air
,”
IEEE Trans. Plasma Sci.
38
,
2848
(
2010
).
26.
M.
Talmor
and
J.
Seyed-Yagoobi
, “
Numerical study of micro-scale EHD conduction pumping: The effect of pump orientation and flow inertia on heterocharge layer morphology and flow distribution control
,”
J. Electrost.
111
,
103548
(
2021
).
27.
I. A.
Krichtafovitch
,
V. L.
Gorobets
,
S. V.
Karpov
, and
A. V.
Mamishev
, “
Electrostatic fluid accelerator and air purifier—The second wind
,” in
Annual Meeting of the Electrostatics Society of America
,
2005
.
28.
T.
Yamamoto
and
H. R.
Velkoff
, “
Electrohydrodynamics in an electrostatic precipitator
,”
J. Fluid Mech.
108
,
1
18
(
1981
).
29.
N.
Takeuchi
and
K.
Yasuoka
, “
Efficiency of a wire-rod type electrohydrodynamic gas pump under negative corona operation
,”
IEEE Trans. Plasma Sci.
37
,
1021
(
2009
).
30.
G. M.
Colver
and
S.
El-Khabiry
, “
Modeling of DC corona discharge along an electrically conductive flat plate with gas flow
,”
IEEE Trans. Ind. Appl.
35
,
387
(
1999
).
31.
M.
Nishikawara
,
H.
Yanada
, and
K.
Shomura
, “
Synergy between injection and dissociation mechanisms in electrohydrodynamic pumps modeled numerically
,”
J. Electrostat.
93
,
137
(
2018
).
32.
A. V.
Gazaryan
,
S. A.
Vasilkov
, and
V. A.
Chirkov
, “
Simple in fabrication and high-performance electrohydrodynamic pump
,”
Phys. Fluids
34
,
123604
(
2022
).
You do not currently have access to this content.