A detailed aeroacoustic analysis of the flow induced by the clearance between the fan tip and the shroud is performed in a scale-model fan stage of an ultrahigh bypass ratio turbofan engine, which was designed to operate at transonic regimes. A wall-modeled large eddy simulation is performed at approach condition, which corresponds to a fully subsonic operating point. The contributions of the tip-gap noise to the total fan noise are investigated using the Ffowcs Williams and Hawkings analogy. The surface is split into two parts: the tip region and the rest of the blade in order to analyze the acoustic contributions of these two regions separately. It is shown that the tip-gap region generates a significant noise component above 2 kHz, which corresponds to approximately 1.2 times the blade passing frequency. Two separate tip-leakage vortices are identified in the vicinity of the fan tip. The dominant noise sources in the tip-gap region are observed at the trailing edge of the fan blade. The wall pressure spectra in the tip-gap region and the coherence of pressure fluctuations between monitor points at different positions show an acoustic contribution of the tip-leakage flow at two different frequency ranges. The first range corresponds to medium frequencies between 2 and 9 kHz, and the second range corresponds to high frequencies between 10 and 25 kHz. The analysis of dynamic mode tracking, fluctuating pressure and velocity spectra, and instantaneous flow fields relates specific vortices in the tip-gap flow to their spectral signature and paves the way for further analytical modeling of tip-gap noise sources.

1.
S.
Moreau
, “
Turbomachinery noise predictions: Present and future
,”
Acoustics
1
,
92
116
(
2019
).
2.
S.
Moreau
, “
A review of turbomachinery noise: From analytical models to high-fidelity simulations
,” in
Fundamentals High Lift Future Civil Aircraft
(
Springer
,
Cham
,
2021
), pp.
579
595
.
3.
M.
Roger
and
S.
Moreau
, “
Back-scattering correction and further extensions of Amiet's trailing-edge noise model. Part 1: Theory
,”
J. Sound Vib.
286
,
477
506
(
2005
).
4.
J.
Al-Am
,
V.
Clair
,
A.
Giauque
,
J.
Boudet
, and
F.
Gea-Aguilera
, “
On the effects of a separation bubble on fan noise
,”
J. Sound Vib.
537
,
117180
(
2022
).
5.
D. A.
Rains
, “
Tip clearance flows in axial compressors and pumps
,” Ph.D. thesis (
California Institute of Technology
,
1954
).
6.
D.
You
,
M.
Wang
,
P.
Moin
, and
R.
Mittal
, “
Large-eddy simulation analysis of mechanisms for viscous losses in a turbomachinery tip-clearance flow
,”
J. Fluid Mech.
586
,
177
204
(
2007
).
7.
P.
Kholodov
and
S.
Moreau
, “
Identification of noise sources in a realistic turbofan rotor using large eddy simulation
,”
Acoustics
2
,
691
706
(
2020
).
8.
F.
Kameier
and
W.
Neise
, “
Experimental study of tip clearance losses and noise in axial turbomachines and their reduction
,”
J. Turbomach.
119
,
460
471
(
1997
).
9.
J.
Grilliat
,
M.
Jacob
,
R.
Camussi
, and
G.
Caputi-Gennaro
, “
Tip leakage experiment-part one: Aerodynamic and acoustic measurements
,” AIAA Paper No. 2007-3684,
2007
.
10.
M. C.
Jacob
,
E.
Jondeau
, and
B.
Li
, “
Time-resolved PIV measurements of a tip leakage flow
,”
Int. J. Aeroacoust.
15
,
662
685
(
2016
).
11.
J.
Boudet
,
J.
Caro
,
B.
Li
,
E.
Jondeau
, and
M. C.
Jacob
, “
Zonal large-eddy simulation of a tip leakage flow
,”
Int. J. Aeroacoust.
15
,
646
661
(
2016
).
12.
T.
Zhu
,
D.
Lallier-Daniels
,
M.
Sanjosé
,
S.
Moreau
, and
T.
Carolus
, “
Rotating coherent flow structures as a source for narrowband tip clearance noise from axial fans
,”
J. Sound Vib.
417
,
198
215
(
2018
).
13.
D.
Lamidel
,
G.
Daviller
,
M.
Roger
, and
H.
Posson
, “
Numerical prediction of the aerodynamics and acoustics of a tip leakage flow using large-eddy simulation
,”
Int. J. Turbomach., Propul. Power
6
,
27
(
2021
).
14.
R.
Koch
,
M.
Sanjosé
, and
S.
Moreau
, “
Large-eddy simulation of a single airfoil tip-leakage flow
,”
AIAA J.
59
,
2546
2557
(
2021
).
15.
A.
Mann
,
M.-S.
Kim
,
J.
Wu
,
F.
Pérot
,
J.
Grilliat
,
M. C.
Jacob
, and
M.
Colman
, “
Airfoil tip leakage aeroacoustics predictions using a lattice Boltzmann based method
,” AIAA Paper No. 2016-2825,
2016
.
16.
S.
Kang
and
C.
Hirsch
, “
Tip leakage flow in linear compressor cascade
,”
J. Turbomach.
116
,
657
664
(
1994
).
17.
R.
Koch
,
M.
Sanjosé
, and
S.
Moreau
, “
Aerodynamic investigation of a linear cascade with tip gap using large-eddy simulation
,”
J. Global Power Propul. Soc.
5
,
39
49
(
2021
).
18.
R.
Koch
,
M.
Sanjosé
, and
S.
Moreau
, “
Large-eddy simulation of a linear compressor cascade with tip gap: Aerodynamic and acoustic analysis
,” AIAA Paper No. 2021-2312,
2021
.
19.
J. F.
Williams
and
L.
Hall
, “
Aerodynamic sound generation by turbulent flow in the vicinity of a scattering half plane
,”
J. Fluid Mech.
40
,
657
670
(
1970
).
20.
E.
Canepa
,
A.
Cattanei
,
F.
Mazzocut Zecchin
,
G.
Milanese
, and
D.
Parodi
, “
An experimental investigation on the tip leakage noise in axial-flow fans with rotating shroud
,”
J. Sound Vib.
375
,
115
131
(
2016
).
21.
H.
Lee
,
K.
Park
, and
H.
Choi
, “
Experimental investigation of tip-leakage flow in an axial flow fan at various flow rates
,”
J. Mech. Sci. Technol.
33
,
1271
1278
(
2019
).
22.
C.
Pérez Arroyo
,
T.
Leonard
,
M.
Sanjosé
,
S.
Moreau
, and
F.
Duchaine
, “
Large eddy simulation of a scale-model turbofan for fan noise source diagnostic
,”
J. Sound Vib.
445
,
64
76
(
2019
).
23.
P.
Kholodov
,
M.
Sanjose
, and
S.
Moreau
, “
Tip flow evolution in a turbofan rotor for broadband noise diagnostic
,” AIAA Paper No. 2020-2521,
2020
.
24.
V.
Pagès
,
P.
Duquesne
,
S.
Aubert
,
L.
Blanc
,
P.
Ferrand
,
X.
Ottavy
, and
C.
Brandstetter
, “
UHBR open-test-case fan ECL5/CATANA
,”
Int. J. Turbomach., Propul. Power
7
,
17
(
2022
).
25.
M. M.
Rai
and
N. K.
Madavan
, “
Multi-airfoil Navier–Stokes simulations of turbine rotor–stator interaction
,”
J. Turbomach.
112
,
377
384
(
1990
).
26.
J.
Al-Am
,
V.
Clair
,
A.
Giauque
,
J.
Boudet
, and
F.
Gea-Aguilera
, “
Direct noise predictions of fan broadband noise using LES and analytical models
,” AIAA Paper No. 2022-2882,
2022
.
27.
T.
Schonfeld
and
M.
Rudgyard
, “
Steady and unsteady flow simulations using the hybrid flow solver AVBP
,”
AIAA J.
37
,
1378
1385
(
1999
).
28.
G.
Wang
,
F.
Duchaine
,
D.
Papadogiannis
,
I.
Duran
,
S.
Moreau
, and
L. Y.
Gicquel
, “
An overset grid method for large eddy simulation of turbomachinery stages
,”
J. Comput. Phys.
274
,
333
355
(
2014
).
29.
O.
Colin
and
M.
Rudgyard
, “
Development of high-order Taylor-Galerkin schemes for LES
,”
J. Comput. Phys.
162
,
338
371
(
2000
).
30.
F.
Nicoud
,
H. B.
Toda
,
O.
Cabrit
,
S.
Bose
, and
J.
Lee
, “
Using singular values to build a subgrid-scale model for large eddy simulations
,”
Phys. Fluids
23
,
085106
(
2011
).
31.
T.
Poinsot
and
S.
Lele
, “
Boundary conditions for direct simulations of compressible viscous flows
,”
J. Comput. Phys.
101
,
104
129
(
1992
).
32.
P.
Schmitt
,
T.
Poinsot
,
B.
Schuermans
, and
K. P.
Geigle
, “
Large-eddy simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high-pressure burner
,”
J. Fluid Mech.
570
,
17
46
(
2007
).
33.
J.
Boudet
,
J.-F.
Monier
, and
F.
Gao
, “
Implementation of a roughness element to trip transition in large-eddy simulation
,”
J. Therm. Sci.
24
,
30
36
(
2015
).
34.
J.
Al-Am
,
V.
Clair
,
A.
Giauque
,
J.
Boudet
, and
F.
Gea-Aguilera
, “
A parametric study on the LES numerical setup to investigate fan/OGV broadband noise
,”
Int. J. Turbomach., Propul. Power
6
,
12
(
2021
).
35.
T. J.
Praisner
and
C. R.
Smith
, “
The dynamics of the horseshoe vortex and associated endwall heat transfer—Part I: Temporal behavior
,”
J. Turbomach.
128
,
747
754
(
2005
).
36.
G.
Daviller
,
M.
Brebion
,
P.
Xavier
,
G.
Staffelbach
,
J.-D.
Müller
, and
T.
Poinsot
, “
A mesh adaptation strategy to predict pressure losses in LES of swirled flows
,”
Flow, Turbul. Combust.
99
,
93
118
(
2017
).
37.
G.
Wang
,
F.
Yang
,
K.
Wu
,
Y.
Ma
,
C.
Peng
,
T.
Liu
, and
L.-P.
Wang
, “
Estimation of the dissipation rate of turbulent kinetic energy: A review
,”
Chem. Eng. Sci.
229
,
116133
(
2021
).
38.
D. M.
McEligot
,
E. J.
Walsh
,
E.
Laurien
, and
P. R.
Spalart
, “
Entropy generation in the viscous parts of turbulent boundary layers
,”
J. Fluids Eng.
130
,
061205
(
2008
).
39.
D.
Hanson
and
M.
Fink
, “
The importance of quadrupole sources in prediction of transonic tip speed propeller noise
,”
J. Sound Vib.
62
,
19
38
(
1979
).
40.
M.
Roger
,
S.
Moreau
, and
K.
Kucukcoskun
, “
On sound scattering by rigid edges and wedges in a flow, with applications to high-lift device aeroacoustics
,”
J. Sound Vib.
362
,
252
275
(
2016
).
41.
Y.
Rozenberg
,
G.
Robert
, and
S.
Moreau
, “
Wall-pressure spectral model including the adverse pressure gradient effects
,”
AIAA J.
50
,
2168
2179
(
2012
).
42.
J.
Boudet
,
A.
Cahuzac
,
P.
Kausche
, and
M. C.
Jacob
, “
Zonal large-eddy simulation of a fan tip-clearance flow, with evidence of vortex wandering
,”
J. Turbomach.
137
,
061001
(
2015
).
43.
D.
You
,
M.
Wang
,
P.
Moin
, and
R.
Mittal
, “
Vortex dynamics and low-pressure fluctuations in the tip-clearance flow
,”
J. Fluids Eng.
129
,
1002
1014
(
2007
).
44.
M.
Queguineur
,
L.
Gicquel
,
F.
Dupuy
,
A.
Misdariis
, and
G.
Staffelbach
, “
Dynamic mode tracking and control with a relaxation method
,”
Phys. Fluids
31
,
034101
(
2019
).
45.
D.
Casalino
, “
An advanced time approach for acoustic analogy predictions
,”
J. Sound Vib.
261
,
583
612
(
2003
).
46.
A.
Najafi-Yazdi
,
G. A.
Brès
, and
L.
Mongeau
, “
An acoustic analogy formulation for moving sources in uniformly moving media
,”
Proc. R. Soc. A
467
,
144
165
(
2011
).
47.
P.
Welch
, “
The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms
,”
IEEE Trans. Audio Electroacoust.
15
,
70
73
(
1967
).
You do not currently have access to this content.