In this paper, direct numerical simulations in a Mach 6.0 hypersonic turbulent boundary layer over a 30 ° compression ramp are performed. The influence of shock wave/boundary layer interactions on the amplification of turbulent kinetic energy (TKE) and temperature fluctuation (TF) is explored, to provide an insight into the physical mechanism. In the initial part of the interaction region before the detachment of the shear layer, the amplification of the TKE and TF is found, via a frequency spectrum analysis, to be closely related to the low-frequency unsteadiness of the shock wave. Once the free shear layer is established, the shear component of the TKE production defined in the shear layer coordinate appears to act as the main contributor for the TKE amplification, owing to the mixing layer turbulence and the resultant Kelvin–Helmholtz instability. This is consistent with the result from the spectrum analysis that the TKE and TF amplification and their streamwise evolution are dominated by the spectral energy in the median-frequency range, arising from the mixing layer turbulence. As the flow moves downstream along the shock wave, the high-frequency spectral energy content of TF shows a decreasing trend, while the low-frequency spectral energy tends to increase gradually, implying that the shock wave low-frequency unsteadiness exists not only in the initial stage of the interaction region but also around the main shock wave. Under the combined influence of the shock wave intensity and interaction intensity, the median-frequency content appears to weaken first and then tends to increase before decreasing again. The variation amplitude appears to be small and generally dominates the distribution of the TF intensity.
Skip Nav Destination
Article navigation
April 2023
Research Article|
April 25 2023
Amplification of turbulent kinetic energy and temperature fluctuation in a hypersonic turbulent boundary layer over a compression ramp
Special Collection:
Hypersonic Flow
Guo Tongbiao (郭同彪)
;
Guo Tongbiao (郭同彪)
(Conceptualization, Formal analysis, Writing – original draft)
1
LHD, Institute of Mechanics, Chinese Academy of Sciences
, Beijing 100190, China
Search for other works by this author on:
Zhang Ji (张吉)
;
Zhang Ji (张吉)
(Methodology, Software)
1
LHD, Institute of Mechanics, Chinese Academy of Sciences
, Beijing 100190, China
2
School of Engineering Science, University of Chinese Academy of Sciences
, Beijing 100049, China
Search for other works by this author on:
Tong Fulin (童福林)
;
Tong Fulin (童福林)
(Methodology, Validation)
3
State Key Laboratory of Aerodynamics
, 621000 Mianyang, China
Search for other works by this author on:
Li Xinliang (李新亮)
Li Xinliang (李新亮)
a)
(Methodology, Software, Validation)
1
LHD, Institute of Mechanics, Chinese Academy of Sciences
, Beijing 100190, China
2
School of Engineering Science, University of Chinese Academy of Sciences
, Beijing 100049, China
a)Author to whom correspondence should be addressed: lixl@imech.ac.cn
Search for other works by this author on:
a)Author to whom correspondence should be addressed: lixl@imech.ac.cn
Note: This paper is part of the special topic, Hypersonic Flow.
Physics of Fluids 35, 046118 (2023)
Article history
Received:
February 05 2023
Accepted:
April 06 2023
Citation
Tongbiao Guo, Ji Zhang, Fulin Tong, Xinliang Li; Amplification of turbulent kinetic energy and temperature fluctuation in a hypersonic turbulent boundary layer over a compression ramp. Physics of Fluids 1 April 2023; 35 (4): 046118. https://doi.org/10.1063/5.0145320
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00
199
Views