In this paper, direct numerical simulations in a Mach 6.0 hypersonic turbulent boundary layer over a 30 ° compression ramp are performed. The influence of shock wave/boundary layer interactions on the amplification of turbulent kinetic energy (TKE) and temperature fluctuation (TF) is explored, to provide an insight into the physical mechanism. In the initial part of the interaction region before the detachment of the shear layer, the amplification of the TKE and TF is found, via a frequency spectrum analysis, to be closely related to the low-frequency unsteadiness of the shock wave. Once the free shear layer is established, the shear component of the TKE production defined in the shear layer coordinate appears to act as the main contributor for the TKE amplification, owing to the mixing layer turbulence and the resultant Kelvin–Helmholtz instability. This is consistent with the result from the spectrum analysis that the TKE and TF amplification and their streamwise evolution are dominated by the spectral energy in the median-frequency range, arising from the mixing layer turbulence. As the flow moves downstream along the shock wave, the high-frequency spectral energy content of TF shows a decreasing trend, while the low-frequency spectral energy tends to increase gradually, implying that the shock wave low-frequency unsteadiness exists not only in the initial stage of the interaction region but also around the main shock wave. Under the combined influence of the shock wave intensity and interaction intensity, the median-frequency content appears to weaken first and then tends to increase before decreasing again. The variation amplitude appears to be small and generally dominates the distribution of the TF intensity.

1.
D. S.
Dolling
, “
Fifty years of shock-wave/boundary-layer interaction research: What next?
,”
AIAA J.
39
,
1517
1531
(
2001
).
2.
A. J.
Smits
and
K.-C.
Muck
, “
Experimental study of three shock wave/turbulent boundary layer interactions
,”
J. Fluid Mech.
182
,
291
314
(
1987
).
3.
P.
Dupont
,
S.
Piponniau
,
A.
Sidorenko
, and
J. F.
Debiève
, “
Investigation by particle image velocimetry measurements of oblique shock reflection with separation
,”
AIAA J.
46
,
1365
1370
(
2008
).
4.
M. A.
Mustafa
,
N. J.
Parziale
,
M. S.
Smith
, and
E. C.
Marineau
, “
Amplification and structure of streamwise-velocity fluctuations in compression-corner shock-wave/turbulent boundary-layer interactions
,”
J. Fluid Mech.
863
,
1091
1122
(
2019
).
5.
J.
Fang
,
A. A.
Zheltovodov
,
Y.
Yao
,
C.
Moulinec
, and
D. R.
Emerson
, “
On the turbulence amplification in shock-wave/turbulent boundary layer interaction
,”
J. Fluid Mech.
897
,
A32
(
2020
).
6.
M. S.
Selig
,
J.
Andreopoulos
,
K. C.
Muck
,
J. P.
Dussauge
, and
A. J.
Smits
, “
Turbulence structure in a shock wave/turbulent boundary-layer interaction
,”
AIAA J.
27
,
862
869
(
1989
).
7.
M.
Wu
and
M. P.
Martin
, “
Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp
,”
AIAA J.
45
,
879
889
(
2007
).
8.
S.
Priebe
,
M.
Wu
, and
M. P.
Martín
, “
Direct numerical simulation of a reflected-shock-wave/turbulent-boundary-layer interaction
,”
AIAA J.
47
,
1173
1185
(
2009
).
9.
S.
Pirozzoli
and
F.
Grasso
, “
Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25
,”
Phys. Fluids
18
,
065113
(
2006
).
10.
S.
Priebe
and
M. P.
Martín
, “
Low-frequency unsteadiness in shock wave–turbulent boundary layer interaction
,”
J. Fluid Mech.
699
,
1
49
(
2012
).
11.
P.
Dupont
,
S.
Piponniau
, and
J. P.
Dussauge
, “
Compressible mixing layer in shock-induced separation
,”
J. Fluid Mech.
863
,
620
643
(
2019
).
12.
C. M.
Helm
,
M. P.
Martín
, and
O. J.
Williams
, “
Characterization of the shear layer in separated shock/turbulent boundary layer interactions
,”
J. Fluid Mech.
912
,
A7
(
2021
).
13.
M.
Yu
,
M.
Zhao
,
Z.
Tang
,
X.
Yuan
, and
C.
Xu
, “
A spectral inspection for turbulence amplification in oblique shock wave/turbulent boundary layer interaction
,”
J. Fluid Mech.
951
,
A2
(
2022
).
14.
M. V.
Morkovin
, “
Effects of compressibility on turbulent flows
,”
Méc. Turbul.
367
,
26
(
1962
).
15.
L.
Duan
,
I.
Beekman
, and
M. P.
Martín
, “
Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature
,”
J. Fluid Mech.
655
,
419
445
(
2010
).
16.
G.
Gerolymos
and
I.
Vallet
, “
Pressure, density, temperature and entropy fluctuations in compressible turbulent plane channel flow
,”
J. Fluid Mech.
757
,
701
746
(
2014
).
17.
B.
McManamen
,
D.
Donzis
,
S.
North
, and
R.
Bowersox
, “
Velocity and temperature fluctuations in a high-speed shock–turbulence interaction
,”
J. Fluid Mech.
913
,
A10
(
2021
).
18.
F.
Tong
,
D.
Sun
, and
X.
Li
, “
Direct numerical simulation of impinging shock wave and turbulent boundary layer interaction over a wavy-wall
,”
Chin. J. Aeronaut.
34
,
350
363
(
2021
).
19.
T.
Guo
,
J.
Fang
,
J.
Zhang
, and
X.
Li
, “
Investigation of the secondary flow by convergent–divergent riblets in a supersonic turbulent boundary layer over a compression ramp
,”
Phys. Fluids
34
,
106112
(
2022
).
20.
J.
Duan
,
X.
Li
,
X.
Li
, and
H.
Liu
, “
Direct numerical simulation of a supersonic turbulent boundary layer over a compression–decompression corner
,”
Phys. Fluids
33
,
065111
(
2021
).
21.
G.
Dang
,
S.
Liu
,
T.
Guo
,
J.
Duan
, and
X.
Li
, “
Direct numerical simulation of compressible turbulence accelerated by graphics processing unit: An open-source high accuracy accelerated computational fluid dynamic software
,”
Phys. Fluids
34
,
126106
(
2022
).
22.
T.
Guo
,
J.
Fang
,
J.
Zhang
, and
X.
Li
, “
Direct numerical simulation of shock-wave/boundary layer interaction controlled with convergent–divergent riblets
,”
Phys. Fluids
34
,
086101
(
2022
).
23.
A.
Jameson
,
W.
Schmidt
, and
E.
Turkel
, “
Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes
,” in
14th Fluid and Plasma Dynamics Conference
(
AIAA
,
1981
).
24.
S.
Pirozzoli
,
F.
Grasso
, and
T. B.
Gatski
, “
Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25
,”
Phys. Fluids
16
,
530
545
(
2004
).
25.
S.
Pirozzoli
,
F.
Grasso
, and
A.
D'Andrea
, “
Interaction of a shock wave with two counter-rotating vortices: Shock dynamics and sound production
,”
Phys. Fluids
13
,
3460
3481
(
2001
).
26.
C.
Zhang
,
L.
Duan
, and
M. M.
Choudhari
, “
Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers
,”
AIAA J.
56
,
4297
4311
(
2018
).
27.
X.
Wu
and
P.
Moin
, “
Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer
,”
J. Fluid Mech.
630
,
5
41
(
2009
).
28.
M.
Grilli
,
P. J.
Schmid
,
S.
Hickel
, and
N. A.
Adams
, “
Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction
,”
J. Fluid Mech.
700
,
16
28
(
2012
).
29.
J.
Jeong
and
F.
Hussain
, “
On the identification of a vortex
,”
J. Fluid Mech.
285
,
69
94
(
1995
).
30.
R. A.
Humble
,
F.
Scarano
, and
B. W.
Van Oudheusden
, “
Unsteady aspects of an incident shock wave/turbulent boundary layer interaction
,”
J. Fluid Mech.
635
,
47
74
(
2009
).
31.
S.
Barre
,
D.
Alem
, and
J. P.
Bonnet
, “
Experimental study of a normal shock/homogeneous turbulence interaction
,”
AIAA J.
34
,
968
974
(
1996
).
32.
K.
Mahesh
,
S. K.
Lele
, and
P.
Moin
, “
The influence of entropy fluctuations on the interaction of turbulence with a shock wave
,”
J. Fluid Mech.
334
,
353
379
(
1997
).
33.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
34.
C. M.
Helm
and
M. P.
Martín
, “
Large eddy simulation of two separated hypersonic shock/turbulent boundary layer interactions
,”
Phys. Rev. Fluids
7
,
074601
(
2022
).
35.
S.
Priebe
and
M. P.
Martín
, “
Turbulence in a hypersonic compression ramp flow
,”
Phys. Rev. Fluids
6
,
034601
(
2021
).
36.
D.
Dolling
, “
Fluctuating loads in shock wave/turbulent boundary layer interaction: Tutorial and update
,” in
31st Aerospace Sciences Meeting
(
AIAA
,
1993
).
37.
F.
Tong
,
J.
Lai
,
J.
Duan
,
S.
Dong
,
X.
Yuan
, and
X.
Li
, “
Effect of interaction strength on recovery downstream of incident shock interactions
,”
Phys. Fluids
34
,
125127
(
2022
).
38.
V.
Pasquariello
,
S.
Hickel
, and
N. A.
Adams
, “
Unsteady effects of strong shock-wave/boundary-layer interaction at high Reynolds number
,”
J. Fluid Mech.
823
,
617
657
(
2017
).
39.
Y.-S.
Zhang
,
W.-T.
Bi
,
F.
Hussain
, and
Z.-S.
She
, “
A generalized Reynolds analogy for compressible wall-bounded turbulent flows
,”
J. Fluid Mech.
739
,
392
420
(
2014
).
You do not currently have access to this content.