To estimate tsunami hazards, it is first necessary to have reliable data relating to the rupture characteristics, such as epicenter, fault geometry, uplift speed, and duration. We made use of a mathematical model that combines analytical and machine learning technique capable of retrieving rupture characteristics from acoustic data. The model was applied with short computational times to data recorded by the comprehensive nuclear-test-Ban Treaty organization hydrophones during four tectonic events that were reported to trigger tsunami waves. The presented inverse problem model for acoustic waves with adequate tsunami propagation tools can be used as a complementary technique alongside tsunami warning systems due to the high propagating speeds of the sound in the ocean. In this paper, the validity of the solutions provided by the inverse problem model is tested by using the calculated earthquake parameters as input to the Cornell multi-grid coupled tsunami numerical model, which, in turn, output surface wave elevations (tsunami) to be compared against deep-ocean assessment and reporting of tsunamis buoy data.

1.
X.
Wang
and
P. L.-F.
Liu
, “
An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian ocean tsunami
,”
J. Hydraul. Res.
44
,
147
154
(
2006
).
2.
Z.
Ren
,
J.
Hou
,
P.
Wang
, and
Y.
Wang
, “
Tsunami resonance and standing waves in Hangzhou bay
,”
Phys. Fluids
33
,
081702
(
2021
).
3.
G.
Hendin
and
M.
Stiassnie
, “
Tsunami and acoustic-gravity waves in water of constant depth
,”
Phys. Fluids
25
,
086103
(
2013
).
4.
U.
Kadri
,
D.
Crivelli
,
W.
Parsons
,
B.
Colbourne
, and
A.
Ryan
, “
Rewinding the waves: Tracking underwater signals to their source
,”
Sci. Rep.
7
,
13949
(
2017
).
5.
C. C.
Mei
and
U.
Kadri
, “
Sound signals of tsunamis from a slender fault
,”
J. Fluid Mech.
836
,
352
373
(
2018
).
6.
B.
Gomez
and
U.
Kadri
, “
Near real-time calculation of submarine fault properties using an inverse model of acoustic signals
,”
Appl. Ocean Res.
109
,
102557
(
2021
).
7.
A.
Abdolali
,
U.
Kadri
, and
J. T.
Kirby
, “
Effect of water compressibility, sea-floor elasticity, and field gravitational potential on tsunami phase speed
,”
Sci. Rep.
9
,
16874
(
2019
).
8.
S.
Bahena-Jimenez
,
E.
Bautista
, and
F.
Méndez
, “
Tsunami generation by a seabed deformation in the presence of a viscoelastic mud
,”
Phys. Fluids
35
,
012116
(
2023
).
9.
T.
Yamamoto
, “
Gravity waves and acoustic waves generated by submarine earthquakes
,”
Int. J. Soil Dyn. Earthquake Eng.
1
,
75
82
(
1982
).
10.
C.
Cecioni
and
G.
Bellotti
, “
On the resonant behavior of a weakly compressible water layer during tsunamigenic earthquakes
,”
Pure Appl. Geophys.
175
,
1355
1361
(
2018
).
11.
C.
Cecioni
,
A.
Romano
,
G.
Bellotti
, and
P.
De Girolamo
, “
3D numerical simulation of hydro-acoustic waves registered during the 2012 Negros-Cebu earthquake
,”
Geosciences
9
,
300
(
2019
).
12.
C.
Cecioni
,
A.
Romano
,
G.
Bellotti
, and
P.
De Girolamo
, “
Hydroacoustic waves measured during the 2012 Negros-Cebu earthquake
,”
J. Waterway, Port, Coastal, Ocean Eng.
144
,
06018004
(
2018
).
13.
M.
Stiassnie
, “
Tsunamis and acoustic-gravity waves from underwater earthquakes
,”
J. Eng. Math.
67
,
23
32
(
2010
).
14.
P.
Sammarco
,
C.
Cecioni
,
G.
Bellotti
, and
A.
Abdolali
, “
Depth-integrated equation for large-scale modelling of low-frequency hydroacoustic waves
,”
J. Fluid Mech.
722
,
R6
(
2013
).
15.
A.
Abdolali
,
C.
Cecioni
,
G.
Bellotti
, and
J. T.
Kirby
, “
Hydro-acoustic and tsunami waves generated by the 2012 Haida Gwaii earthquake: Modeling and in situ measurements
,”
J. Geophys. Res.
120
,
958
971
, https://doi.org/10.1002/2014JC010385 (
2015
).
16.
B.
Gomez
and
U.
Kadri
, “
Earthquake source characterization by machine learning algorithms applied to acoustic signals
,”
Sci. Rep.
11
,
23062
(
2021
).
17.
C.
Synolakis
,
P.
Liu
,
H. A.
Philip
,
G.
Carrier
, and
H.
Yeh
, “
Tsunamigenic sea-floor deformations
,”
Science
278
,
598
600
(
1997
).
18.
E.
Gica
,
M. H.
Teng
,
P. L.-F.
Liu
,
V.
Titov
, and
H.
Zhou
, “
Sensitivity analysis of source parameters for earthquake-generated distant tsunamis
,”
J. Waterway, Port, Coastal, Ocean Eng.
133
,
429
441
(
2007
).
19.
L.
Mansinha
and
D.
Smylie
, “
The displacement fields of inclined faults
,”
Bull. Seismol. Soc. Am.
61
,
1433
1440
(
1971
).
20.
Y.
Okada
, “
Surface deformation due to shear and tensile faults in a half-space
,”
Bull. Seismol. Soc. Am.
75
,
1135
1154
(
1985
).
21.
K.
Koketsu
,
Y.
Yokota
,
N.
Nishimura
,
Y.
Yagi
,
S.
Miyazaki
,
K.
Satake
,
Y.
Fujii
,
H.
Miyake
,
S.
Sakai
,
Y.
Yamanaka
et al, “
A unified source model for the 2011 Tohoku earthquake
,”
Earth Planet. Sci. Lett.
310
,
480
487
(
2011
).
22.
S. E.
Minson
,
M.
Simons
,
J.
Beck
,
F.
Ortega
,
J.
Jiang
,
S.
Owen
,
A.
Moore
,
A.
Inbal
, and
A.
Sladen
, “
Bayesian inversion for finite fault earthquake source models—II: The 2011 great Tohoku-Oki, Japan earthquake
,”
Geophys. J. Int.
198
,
922
940
(
2014
).
23.
T.
Saito
,
Y.
Ito
,
D.
Inazu
, and
R.
Hino
, “
Tsunami source of the 2011 Tohoku-Oki earthquake, japan: Inversion analysis based on dispersive tsunami simulations
,”
Geophys. Res. Lett.
38
,
L00G19
, https://doi.org/10.1029/2011GL049089 (
2011
).
24.
H.
Tsushima
,
K.
Hirata
,
Y.
Hayashi
,
Y.
Tanioka
,
K.
Kimura
,
S.
Sakai
,
M.
Shinohara
,
T.
Kanazawa
,
R.
Hino
, and
K.
Maeda
, “
Near-field tsunami forecasting using offshore tsunami data from the 2011 off the pacific coast of Tohoku earthquake
,”
Earth, Planets Space
63
,
821
826
(
2011
).
25.
S. C.
Lin
,
T.-R.
Wu
,
E.
Yen
,
H.-Y.
Chen
,
J.
Hsu
,
Y.-L.
Tsai
,
C.-J.
Lee
, and
L.-F. L.
Philip
, “
Development of a tsunami early warning system for the south china sea
,”
Ocean Eng.
100
,
1
18
(
2015
).
26.
N.
Rakowsky
,
A.
Androsov
,
A.
Fuchs
,
S.
Harig
,
A.
Immerz
,
S.
Danilov
,
W.
Hiller
, and
J.
Schröter
, “
Operational tsunami modelling with tsunawi–recent developments and applications
,”
Nat. Hazards Earth Syst. Sci.
13
,
1629
1642
(
2013
).
27.
P. L.-F.
Liu
,
Y.-S.
Cho
,
S.
Yoon
, and
S.
Seo
, “
Numerical simulations of the 1960 Chilean tsunami propagation and inundation at Hilo, Hawaii
,” in
Tsunami: Progress in Prediction, Disaster Prevention and Warning
(
Springer
,
1995
), pp.
99
115
.
28.
T. M.
Rasyif
and
S.
Kato
et al, “
Development of accurate tsunami estimated times of arrival for tsunami-prone cities in Aceh, Indonesia
,”
Int. J. Disaster Risk Reduct.
14
,
403
410
(
2015
).
29.
C.
An
,
I.
Sepúlveda
, and
P. L.-F.
Liu
, “
Tsunami source and its validation of the 2014 Iquique, Chile, earthquake
,”
Geophys. Res. Lett.
41
,
3988
3994
, https://doi.org/10.1002/2014GL060567 (
2014
).
30.
T.-R.
Wu
and
H.-C.
Huang
, “
Modeling tsunami hazards from manila trench to Taiwan
,”
J. Asian Earth Sci.
36
,
21
28
(
2009
).
31.
F.
Gonzalez
,
H.
Milburn
,
E.
Bernard
, and
J.
Newman
, “
Deep-ocean assessment and reporting of tsunamis (DART): Brief overview and status report
,” in
Proceedings of the International Workshop on Tsunami Disaster Mitigation
(
NOAA
,
Tokyo, Japan
,
1998
), Vol.
19
, p.
2
.
32.
D. J.
Greenslade
and
V. V.
Titov
, “
A comparison study of two numerical tsunami forecasting systems
,”
Pure Appl. Geophys.
165
,
1991
2001
(
2008
).
33.
C. C.
Mei
,
The Applied Dynamics of Ocean Surface Waves
(
World scientific
,
1989
), Vol.
1
.
34.
B.
Williams
,
U.
Kadri
, and
A.
Abdolali
, “
Acoustic–gravity waves from multi-fault rupture
,”
J. Fluid Mech.
915
,
A108
(
2021
).
35.
P.
Wessel
,
J.
Luis
,
L.
Uieda
,
R.
Scharroo
,
F.
Wobbe
,
W.
Smith
, and
D.
Tian
, “
The generic mapping tools version 6
,”
Geochem., Geophys., Geosyst.
20
,
5556
5564
, https://doi.org/10.1029/2019GC008515 (
2019
).
36.
V. V.
Titov
and
F. I.
Gonzalez
, “
Implementation and testing of the method of splitting tsunami, most, model
,” Memorandum No. ERL PMEL-112 (
Government Printing Office
,
Seattle, WA
,
1997
), p.
11
.
37.
A.
Dziewonski
,
T.-A.
Chou
, and
J. H.
Woodhouse
, “
Determination of earthquake source parameters from waveform data for studies of global and regional seismicity
,”
J. Geophys. Res.
86
,
2825
2852
, https://doi.org/10.1029/JB086iB04p02825 (
1981
).
38.
G.
Ekström
,
M.
Nettles
, and
A.
Dziewoński
, “
The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes
,”
Phys. Earth Planet. Inter.
200
,
1
9
(
2012
).
39.
NOAA
, see https://www.ngdc.noaa.gov/hazard/tsu_db.shtml for “
National geophysical data center/world data service (NGDC/WDS): Global historical tsunami database
,” accessed 10 June 2021 (
2015
).
40.
NOAA,
see https://www.ngdc.noaa.gov/hazard/DARTData.shtml for “
National oceanic and atmospheric administration (NOAA): Deep-ocean assessment and reporting of tsunamis (DART®)
,” accessed 10 June 2021 (
2005
).
41.
IOC
, see http://www.ioc-sealevelmonitoring.org for “
Flanders marine institute (VLIZ); intergovernmental oceanographic commission (IOC); (2021): Sea level station monitoring facility
,” accessed 10 June 2021 (
2013
).
42.
S.
Michele
and
E.
Renzi
, “
Effects of the sound speed vertical profile on the evolution of hydroacoustic waves
,”
J. Fluid Mech.
883
,
A28
(
2020
).
43.
C.
Cecioni
,
A.
Abdolali
,
G.
Bellotti
, and
P.
Sammarco
, “
Large-scale numerical modeling of hydro-acoustic waves generated by tsunamigenic earthquakes
,”
Nat. Hazards Earth Syst. Sci.
15
,
627
636
(
2015
).
44.
U.
Kadri
, “
Effect of sea-bottom elasticity on the propagation of acoustic–gravity waves from impacting objects
,”
Sci. Rep.
9
,
912
(
2019
).
45.
B.
Williams
and
U.
Kadri
, “
The effect of elasticity on acoustic–gravity waves from multi–fault rupture
,” in
AGU Fall Meeting 2021
(
AGU
,
2021
).
46.
U.
Kadri
and
M.
Stiassnie
, “
Acoustic-gravity waves interacting with the shelf break
,”
J. Geophys. Res.
117
,
C03035
, https://doi.org/10.1029/2011JC007674 (
2012
).

Supplementary Material

You do not currently have access to this content.