Direct numerical simulation is conducted to address the detonation–turbulence interaction in a stoichiometric hydrogen/oxygen/argon mixture. The argon dilution rate is varied so that the mixture composition is 2H2 + O2 + 7Ar and 2H2 + O2 + Ar to discuss the effects of cell regularity on the sensitivity to turbulence. Turbulent Reynolds number and turbulent Mach number are taken to be common for both mixtures. The results show that the shock and flame of detonation in both mixtures are significantly deformed into corrugated ones in the turbulent flow, producing many small unburned gas pockets. However, one-dimensional time-averaged profiles reveal the different sensitivity of the mixtures: in the highly diluted mixture (2H2 + O2 + 7Ar), the reaction progress is not much influenced by turbulence, whereas in the less-diluted mixture (2H2 + O2 + Ar), the reaction takes place more rapidly with turbulence. Analysis of the properties of turbulence and turbulent fluctuations in the detonations clarifies that the direct contribution of turbulence to the flame front is weaker; there is no clear correlation between the heat release and the curvature of the flame. On the other hand, a broader Mach number distribution just upstream of the shock front creates more hot spots in the less-diluted mixture, which results in a shorter induction length. These results indicate that the main contribution of turbulence is creation of different shock strength, which could lead to different reaction rates depending on the cell regularity.

1.
P.
Wolanski
, “
Detonative propulsion
,”
Proc. Combust. Inst.
34
,
125
128
(
2013
).
2.
J.
Kindracki
, “
Badania eksperymentalne i symulacje numeryczne procesu inicjacji wirujacej detonacji gazowej
,”
Ph.D. thesis
(
Politechnika Warszawska
,
2008
).
3.
A.
Kawasaki
,
K.
Matsuyama
,
K.
Matsuoka
,
H.
Watanabe
,
N.
Itouyama
et al, “
Flight demonstration of detonation engine system using sounding rocket S-520-31: System design
,” AIAA Paper No. AIAA 2022-0229,
2022
.
4.
K.
Iwata
,
S.
Matsuyama
,
M.
Kojima
,
Y.
Nunome
,
H.
Kawashima
,
H.
Tanno
, and
T.
Mizukaki
, “
Research progress at JAXA on fundamental understanding of wave dynamics and performance evaluation of rotating detonation rocket engine
,”
J. Combust. Soc. Jpn.
62
,
94
102
(
2020
).
5.
B. A.
Rankin
,
M. L.
Fotia
,
A. G.
Naples
,
C. A.
Stevens
,
J. L.
Hoke
,
T. A.
Kaemming
,
S. W.
Theuerkauf
, and
F. R.
Schauer
, “
Overview of performance, application, and analysis of rotating detonation engine technologies
,”
J. Propuls. Power
33
,
131
143
(
2017
).
6.
K.
Ishii
and
M.
Kojima
, “
Behavior of detonation propagation in mixtures with concentration gradients
,”
Shock Waves
17
,
95
102
(
2007
).
7.
K. G.
Vollmer
,
F.
Ettner
, and
T.
Sattelmayer
, “
Deflagration-to-detonation transition in hydrogen/air/air mixtures with a concentration gradient
,”
Combust. Sci. Technol.
184
,
1903
1915
(
2012
).
8.
J.
Fujii
,
Y.
Kumazawa
,
A.
Matsuo
,
S.
Nakagami
,
K.
Matsuoka
, and
J.
Kasahara
, “
Numerical investigation on detonation velocity in rotating detonation engine chamber
,”
Proc. Combust. Inst.
36
,
2665
2672
(
2017
).
9.
S.
Boulal
,
P.
Vidal
, and
R.
Zitoun
, “
Experimental investigation of detonation quenching in non-uniform compositions
,”
Combust. Flame
172
,
222
233
(
2016
).
10.
K.
Iwata
,
N.
Hanyu
,
S.
Maeda
, and
T.
Obara
, “
Experimental visualization of sphere-induced oblique detonation in a non-uniform mixture
,”
Combust. Flame
244
,
112253
(
2022
).
11.
K.
Iwata
,
O.
Imamura
,
K.
Akihama
,
H.
Yamasaki
,
S.
Nakaya
, and
M.
Tsue
, “
Numerical study of self-sustained oblique detonation in a non-uniform mixture
,”
Proc. Combust. Inst.
38
,
3651
3659
(
2021
).
12.
T.
Jin
,
K.
Luo
,
Q.
Dai
, and
J.
Fan
, “
Numerical study on three-dimensional CJ detonation waves interacting with isotropic turbulence
,”
Sci. Bull.
61
,
1756
1765
(
2016
).
13.
T.
Jin
,
K.
Luo
, and
J.
Fan
, “
Simulations of cellular detonation interaction with turbulent flows
,”
AIAA J.
54
,
419
433
(
2016
).
14.
L.
Massa
,
M.
Chauhan
, and
F. K.
Lu
, “
Detonation-turbulence interaction
,”
Combust. Flame
158
,
1788
1806
(
2011
).
15.
K.
Mazaheri
,
Y.
Mahmoudi
, and
M. I.
Radulescu
, “
Diffusion and hydrodynamic instabilities in gaseous detonations
,”
Combust. Flame
159
,
2138
2154
(
2012
).
16.
M. O.
Conaire
,
H. J.
Curran
,
J. M.
Simmie
,
W. J.
Pitz
, and
C. K.
Westbrook
, “
A comprehensive modeling study of hydrogen oxidation
,”
Chem. Eng. Sci.
36
,
603
622
(
2004
).
17.
B. J.
McBride
,
M. J.
Zehe
, and
S.
Gordon
, “
NASA Glenn coefficients for calculating thermodynamic properties of individual species
,”
Report No. NASA/TP-2002-211556
(
NASA
,
2002
).
18.
R. J.
Kee
,
G.
Dixon-Lewis
,
J.
Warnatz
,
M. E.
Coltrin
, and
J. A.
Miller
, “
A fortran computer code packages for the evaluation of gas-phase, multicomponent transport properties
,”
Report No. SAND86-8246
(
Sandia National Laboratories
,
1988
).
19.
R.
Kurose
, see http://www.tse.me.kyoto-u.ac.jp/study/link_e.php for “
In-House Code FK3
.”
20.
H.
Shehab
,
H.
Watanabe
,
Y.
Minamoto
,
R.
Kurose
, and
T.
Kitagawa
, “
Morphology and structure of spherically propagating premixed turbulent hydrogen-air flames
,”
Combust. Flame
238
,
111888
(
2022
).
21.
H.
Shebab
,
H.
Watanabe
,
R.
Kurose
, and
T.
Kitagawa
, “
Numerical study on the effects of turbulence scale on spherically propagating hydrogen flames within multiple flame radii
,”
Int. J. Automot. Eng.
10
,
292
298
(
2019
).
22.
G. S.
Jiang
and
C.-W.
Shu
, “
Efficient implementation of weighted ENO schemes
,”
J. Comput. Phys.
126
,
202
228
(
1996
).
23.
J.
Quirk
, “
A contribution to the great Riemann solver debate
,”
Int. J. Numer. Methods Fluids
18
,
555
574
(
1994
).
24.
S. D.
Kim
,
B. J.
Lee
,
H. J.
Lee
, and
I. S.
Jeung
, “
Robust HLLC Riemann solver with weighted average flux scheme for strong shock
,”
J. Comput. Phys.
228
,
7634
7642
(
2009
).
25.
S.
Gottlieb
and
C.-W.
Shu
, “
Total variation diminishing Runge-Kutta schemes
,”
Math. Comput. Am. Math. Soc.
67
,
73
85
(
1998
).
26.
E.
Shima
and
Y.
Morii
, “
Dual time stepping method for chemical kinetic codes
,” in
9th Mediterranean Combustion Symposium
,
2013
.
27.
T. J.
Poinsot
and
S. K.
Lele
, “
Boundary conditions for direct simulations of compressible viscous flows
,”
J. Comput. Phys.
101
,
104
129
(
1992
).
28.
M.
Kaneshige
and
J. E.
Shepherd
, “
Detonation database
,”
Technical Report No. FM97-8
(
GALCIT
,
1997
).
29.
T.
Passot
and
A.
Pouquet
, “
Numerical simulation of compresible homogeneous flows in the turbulent regime
,”
J. Fluid Mech.
181
,
441
466
(
1987
).
30.
G.
Bansal
,
A.
Mascarenhas
, and
J. H.
Chen
, “
Direct numerical simulations of autoignition in stratified dimethyl-ether(DME)/air turbulent mixtures
,”
Combust. Flame
162
,
688
702
(
2015
).
31.
R.
Samtaney
,
D. I.
Pullin
, and
B.
Kosovic
, “
Direct numerical simulation of decaying compressible turbulence and shocklet statistics
,”
Phys. Fluids
13
,
1415
1430
(
2001
).
32.
K.
Mahesh
,
S. K.
Lele
, and
P.
Moin
, “
The influence of entropy fluctuations on the interaction of turbulence with a shock wave
,”
J. Fluid. Mech.
334
,
357
379
(
1997
).
33.
V.
Deledicque
and
M. V.
Papalexandris
, “
Computational study of three-dimensional gaseous detonation structures
,”
Combust. Flame
144
,
821
837
(
2006
).
34.
N.
Tsuboi
,
S.
Katoh
, and
K.
Hayashi
, “
Three-dimensional numerical simulation for hydrogen/air detonation: Rectangular and diagonal structures
,”
Proc. Combust. Inst.
29
,
2783
2788
(
2002
).
35.
J.
Crane
,
J. T.
Lipkowicz
,
X.
Shi
,
I.
Wlokas
,
A. M.
Kempf
, and
H.
Wang
, “
Three-dimensional detonation structure and its response to confinement
,”
Proc. Combust. Inst.
(in press) (
2022
).
36.
B. A.
Rankin
,
D. R.
Richardson
,
A. W.
Caswell
,
A. G.
Naples
,
J. L.
Hoke
, and
F. R.
Schauer
, “
Chemiluminescence imaging of an optically accessible non-premixed rotating detonation engine
,”
Combust. Flame
176
,
12
22
(
2017
).
37.
A.
Kubota
,
K.
Matsuoka
,
A.
Kawasaki
,
J.
Kasahara
,
H.
Watanabe
,
A.
Matsuo
, and
T.
Endo
, “
Optical measurement of fluid motion in semi-valveless pulse detonation combustor with high-frequency operation
,”
Combust. Sci. Technol.
192
,
197
212
(
2020
).
38.
K.
Ishihara
,
K.
Yoneyama
,
T.
Sato
,
H.
Watanabe
,
N.
Itouyama
,
A.
Kawasaki
,
K.
Matsuoka
,
J.
Kasahara
,
A.
Matsuo
, and
I.
Funaki
, “
Visualization and performance evaluation of liquid-ethanol cylindrical rotating detonation combustor
,”
Trans. JSASS Aero. Tech. Jpn.
66
,
46
58
(
2023
).
39.
Y.
Gao
,
B.
Zhang
,
H. D.
Ng
, and
J. H. S.
Lee
, “
An experimental investigation of detonation limits in hydrogen-oxygen-argon mixtures
,”
Int. J. Hydrogen Energy
41
,
6076
6083
(
2016
).
40.
J.
Sesterhenn
,
J.-F.
Dohogne
, and
R.
Friedrich
, “
Direct numerical simulation of the interaction of isotropic turbulence with a shock wave using shock-fitting
,”
C. R. Mech.
333
,
87
94
(
2005
).
41.
J. H. S.
Lee
,
The Detonation Phenomenon
(
Cambridge University Press
,
Cambridge
,
2008
).
You do not currently have access to this content.