Tip clearance in pump induces tip leakage vortex (TLV), which interacts with the main flow and leads to instability of flow pattern and decrease in pump performance. In this work, a closed-loop experimental rig with high-speed observation for a mixed flow pump is established, and the numerical simulation on tip leakage cavitation is conducted with experimental validation. A new double-hump pattern of tip leakage cavitation is first observed in the mixed flow pump. Results show that primary tip leakage vortex cavitation develops from a linear pattern to a banded pattern and, finally, to a double-hump pattern. The spatial–temporal evolution of tip leakage cavitation with double-hump can be classified into four stages: incepting stage, growing stage, merging stage, and propagating stage. The inception of the front hump is found to correspond to the periodic evolution of the specific passage vortex-tip leakage vortex (PV-TLV) pair. Affected by the propagation of the high-pressure area at the passage outlet, the PV wanders in the downstream passage, which greatly affects the intensity of tip leakage flow. The away motion of the PV from the tip clearance brings stronger tip leakage flow and results in the intensified TLV and the lower core pressure. As a result, the front hump incepts, grows, and travels downstream. Finally, it merges with the rear hump and together propagates to the downstream passage.

1.
B.
Liu
,
G.
An
,
X.
Yu
et al, “
Quantitative evaluation of the unsteady behaviors of the tip leakage vortex in a subsonic axial compressor rotor
,”
Exp. Therm. Fluid Sci.
79
,
154
167
(
2016
).
2.
W.
Shang
,
D.
Li
,
K.
Luo
et al, “
Evaluation of the spatiotemporal unsteady characteristics of the tip leakage vortex based on a direct numerical simulation database
,”
Phys. Fluids
34
,
065131
(
2022
).
3.
R.
Miorini
,
H.
Wu
, and
J.
Katz
, “
The internal structure of the tip leakage vortex within the rotor of an axial waterjet pump
,”
J. Turbomach.
134
,
031018
(
2012
).
4.
K.
Kan
,
H.
Li
,
H.
Chen
et al, “
Effects of clearance and operating conditions on tip leakage vortex-induced energy loss in an axial-flow pump using entropy production method
,”
J. Fluids Eng.
145
(
3
),
031201
(
2023
).
5.
K.
Kan
,
Q.
Zhang
,
Z.
Xu
et al, “
Energy loss mechanism due to tip leakage flow of axial flow pump as turbine under various operating conditions
,”
Energy
255
(
3
),
124532
(
2022
).
6.
W.
Li
,
L.
Ji
,
E.
Le
et al, “
Numerical investigation of energy loss mechanism of mixed flow pump under stall condition
,”
Renewable Energy
167
,
740
760
(
2021
).
7.
J.
Choi
,
C.
Hsiao
,
G.
Chahine
et al, “
Growth, oscillation and collapse of vortex cavitation bubbles
,”
J. Fluid Mech.
624
,
255
279
(
2009
).
8.
Q.
Wu
,
B.
Huang
,
G.
Wang
et al, “
Numerical modelling of unsteady cavitation and induced noise around a marine propeller
,”
Ocean Eng.
160
,
143
155
(
2018
).
9.
C.
Muthanna
and
W.
Devenport
, “
Wake of a compressor cascade with tip gap, Part 1: Mean flow and turbulence structure
,”
AIAA J.
42
(
11
),
2320
2331
(
2004
).
10.
Y.
Wang
and
W.
Devenport
, “
Wake of a compressor cascade with tip gap, Part 2: Effects of endwall motion
,”
AIAA J.
42
(
11
),
2332
2340
(
2004
).
11.
D.
You
,
M.
Wang
,
P.
Moin
et al, “
Large-eddy simulation analysis of mechanisms for viscous losses in a turbomachinery tip-clearance flow
,”
J. Fluid Mech.
586
,
177
204
(
2007
).
12.
D.
You
,
M.
Wang
,
P.
Moin
et al, “
Vortex dynamics and low-pressure fluctuations in the tip-clearance flow
,”
J. Fluids Eng.
129
,
1002
1014
(
2007
).
13.
D.
You
,
M.
Wang
,
P.
Moin
et al, “
Effects of tip-gap size on the tip-leakage flow in a turbomachinery cascade
,”
Phys. Fluids
18
(
10
),
105102
(
2006
).
14.
J.
Hou
,
Y.
Liu
,
L.
Zhong
et al, “
Effect of vorticity transport on flow structure in the tip region of axial compressors
,”
Phys. Fluids
34
,
055102
(
2022
).
15.
J.
Ventosa-Molina
,
B.
Koppe
,
M.
Lange
et al, “
Effects of rotation on the flow structure in a compressor cascade
,”
J. Turbomach.
144
,
081006
(
2022
).
16.
Y.
Han
and
L.
Tan
, “
Influence of rotating speed on tip leakage vortex in a mixed flow pump as turbine at pump mode
,”
Renewable Energy
162
,
144
150
(
2020
).
17.
Y.
Han
and
L.
Tan
, “
Dynamic mode decomposition and reconstruction of tip leakage vortex in a mixed flow pump as turbine at pump mode
,”
Renewable Energy
155
,
725
734
(
2020
).
18.
Y.
Liu
,
T.
Lei
,
H.
Yue
et al, “
Energy performance and flow patterns of a mixed-flow pump with different tip clearance sizes
,”
Energies
10
(
2
),
191
(
2017
).
19.
Y.
Liu
and
L.
Tan
, “
Spatial-temporal evolution of tip leakage vortex in a mixed flow pump with tip clearance
,”
J. Fluids Eng.
141
(
8
),
081302
(
2019
).
20.
Y.
Liu
and
L.
Tan
, “
Tip clearance on pressure fluctuation intensity and vortex characteristic of a mixed flow pump as turbine at pump mode
,”
Renewable Energy
129
,
606
(
2018
).
21.
Q.
Guo
,
X.
Huang
, and
B.
Qiu
, “
Numerical investigation of the blade tip leakage vortex cavitation in a waterjet pump
,”
Ocean Eng.
187
,
106170
(
2019
).
22.
C.
Xie
,
J.
Liu
,
J.
Jiang
et al, “
Numerical study on wetted and cavitating tip-vortical flows around an elliptical hydrofoil: Interplay of cavitation, vortices, and turbulence
,”
Phys. Fluids
33
,
093316
(
2021
).
23.
M.
Dreyer
,
J.
Decaix
,
C.
Münch-Alligné
et al, “
Mind the gap: new insight into the tip leakage vortex using stereo-PIV
,”
Exp. Fluids
55
(
11
),
1849
(
2014
).
24.
Y.
Zhao
,
G.
Wang
,
Y.
Jiang
et al, “
Numerical analysis of developed tip leakage cavitating flows using a new transport-based model
,”
Int. Commun. Heat Mass Transfer
78
,
39
47
(
2016
).
25.
P.
Russell
,
L.
Barbaca
,
J.
Venning
et al, “
The influence of nucleation on cavitation inception in tip-leakage flows
,”
Phys. Fluids
35
,
013341
(
2023
).
26.
D.
Zhang
,
W.
Shi
,
D.
Pan
et al, “
Numerical and experimental investigation of tip leakage vortex cavitation patterns and mechanisms in an axial flow pump
,”
J. Fluids Eng.
137
(
12
),
121103
(
2015
).
27.
H.
Wu
,
D.
Tan
,
R.
Miorini
et al, “
Three-dimensional flow structures and associated turbulence in the tip region of a waterjet pump rotor blade
,”
Exp. Fluids
51
(
6
),
1721
1737
(
2011
).
28.
H.
Wu
,
R.
Miorini
, and
J.
Katz
, “
Measurements of the tip leakage vortex structures and turbulence in the meridional plane of an axial water-jet pump
,”
Exp. Fluids
50
(
4
),
989
1003
(
2011
).
29.
D.
Tan
,
Y.
Li
,
I.
Wilkes
et al, “
Experimental investigation of the role of large scale cavitating vortical structures in performance breakdown of an axial waterjet pump
,”
J. Fluids Eng.
137
,
111301
(
2015
).
30.
H.
Chen
,
N.
Doeller
,
C.
Li
et al, “
Experimental investigations of cavitation performance breakdown in an axial waterjet pump
,”
J. Fluids Eng.
142
,
091204
(
2020
).
31.
L.
Li
,
Y.
Huo
,
Z.
Wang
et al, “
Large eddy simulation of tip-leakage cavitating flow using a multiscale cavitation model and investigation on model parameters
,”
Phys. Fluids
33
(
9
),
092104
(
2021
).
32.
M.
Xu
,
H.
Cheng
,
B.
Ji
et al, “
LES of tip-leakage cavitating flow with special emphasis on different tip clearance sizes by a new Euler-Lagrangian cavitation model
,”
Ocean Eng.
213
,
107661
(
2020
).
33.
H.
Cheng
,
X.
Bai
,
X.
Long
et al, “
Large eddy simulation of the tip-leakage cavitating flow with an insight on how cavitation influences vorticity and turbulence
,”
Appl. Math. Modell.
77
,
788
809
(
2020
).
34.
Z.
Qian
,
Z.
Wang
,
C.
Geng
et al, “
Vortex and cavity dynamics for the tip-leakage cavitation over a hydrofoil
,”
Phys. Fluids
34
,
093303
(
2022
).
35.
Y.
Xu
,
L.
Tan
,
Y.
Liu
et al, “
Pressure fluctuation and flow pattern of a mixed-flow pump with different blade tip clearances under cavitation condition
,”
Adv. Mech. Eng.
9
(
4
),
1687814017696227
(
2017
).
36.
Y.
Hao
and
L.
Tan
, “
Symmetrical and unsymmetrical tip clearances on cavitation performance and radial force of a mixed flow pump as turbine at pump mode
,”
Renewable Energy
127
,
368
376
(
2018
).
37.
D.
Zhang
,
L.
Shi
,
W.
Shi
et al, “
Numerical analysis of unsteady tip leakage vortex cavitation cloud and unstable suction-side-perpendicular cavitating vortices in an axial flow pump
,”
Int. J. Multiphase Flow
77
,
244
259
(
2015
).
38.
Y.
Long
,
C.
An
,
R.
Zhu
et al, “
Research on hydrodynamics of high velocity regions in a water-jet pump based on experimental and numerical calculations at different cavitation conditions
,”
Phys. Fluids
33
,
045124
(
2021
).
39.
K.
Liu
,
P.
Wei
,
L. S.
Cao
et al, “
Tip vortex cavitation suppression and parametric study of an elliptical hydrofoil by water injection
,”
Phys. Fluids
35
,
013338
(
2023
).
40.
W.
Wang
,
Z.
Li
,
M.
Liu
et al, “
Influence of water injection on broadband noise and hydrodynamic performance for a NACA66 (MOD) hydrofoil under cloud cavitation condition
,”
Appl. Ocean Res.
115
,
102858
(
2021
).
41.
C. S.
Lee
,
B. K.
Ahn
,
J. M.
Han
et al, “
Propeller tip vortex cavitation control and induced noise suppression by water injection
,”
J. Mar. Sci. Technol.
23
(
3
),
453
463
(
2018
).
42.
A.
Asnaghi
,
U.
Svennberg
,
R.
Gustafsson
et al, “
Investigations of tip vortex mitigation by using roughness
,”
Phys. Fluids
32
,
065111
(
2020
).
43.
U.
Svennberg
,
A.
Asnaghi
,
R.
Gustafsson
et al, “
Experimental analysis of tip vortex cavitation mitigation by controlled surface roughness
,”
J. Hydrodyn.
32
(
6
),
1059
1070
(
2020
).
44.
A.
Amini
,
M.
Reclari
,
T.
Sano
et al, “
Suppressing tip vortex cavitation by winglets
,”
Exp. Fluids
60
,
159
(
2019
).
45.
Y.
Liu
and
L.
Tan
, “
Method of T shape tip on energy improvement of a hydrofoil with tip clearance in tidal energy
,”
Renewable Energy
149
,
42
54
(
2020
).
46.
Y.
Liu
and
L.
Tan
, “
Influence of C groove on suppressing vortex and cavitation for a NACA0009 hydrofoil with tip clearance in tidal energy
,”
Renewable Energy
148
,
907
922
(
2020
).
47.
Y.
Han
,
Y.
Liu
, and
L.
Tan
, “
Method of variable-depth groove on vortex and cavitation suppression for a NACA0009 hydrofoil with tip clearance in tidal energy
,”
Renewable Energy
199
,
546
559
(
2022
).
48.
F.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
(
8
),
1598
1605
(
1994
).
49.
P.
Smirnov
and
F.
Menter
, “
Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart–Shur correction term
,”
J. Turbomach.
131
,
041010
(
2009
).
50.
A.
Asnaghi
,
U.
Svennberg
, and
R.
Bensow
, “
Evaluation of curvature correction methods for tip vortex prediction in SST k-ω turbulence model framework
,”
Int. J. Heat Fluid Flow
75
,
135
152
(
2019
).
51.
Y.
Han
,
M.
Liu
, and
L.
Tan
, “
Method of data-driven mode decomposition for cavitating flow in a Venturi nozzle
,”
Ocean Eng.
261
,
112114
(
2022
).
52.
C.
Wang
,
G.
Wang
, and
B.
Huang
, “
Characteristics and dynamics of compressible cavitating flows with special emphasis on compressibility effects
,”
Int. J. Multiphase Flow
130
,
103357
(
2020
).
53.
M.
Liu
,
L.
Tan
,
Y.
Liu
et al, “
Large eddy simulation of cavitation vortex interaction and pressure fluctuation around hydrofoil ALE 15
,”
Ocean Eng.
163
,
264
274
(
2018
).
54.
M.
Liu
,
L.
Tan
, and
S. L.
Cao
, “
Cavitation-vortex-turbulence interaction and one-dimensional model prediction of pressure for hydrofoil ALE15 by large eddy simulation
,”
J. Fluids Eng.
141
,
021103
(
2019
).
55.
R.
Huang
,
R.
Qiu
,
Y.
Zhi
et al, “
Investigations into the ventilated cavities around a surface-piercing hydrofoil at high Froude numbers
,”
Phys. Fluids
34
,
043304
(
2022
).
You do not currently have access to this content.