Cavitation and the corresponding induced vibration characteristics in a centrifugal pump under part load (0.4Qd, Qd is rated flow) conditions were investigated by combining numerical simulation and experimental analysis to determine the internal flow characteristics and vibration signals under different cavitation conditions. Under part load conditions, cavitation is initiated at the inlet of blades close to the tongue. Expansion of a low-pressure region increases the size of vortex in the flow passages, which increases the severity of the flow instability in the pump during severe cavitation. As cavitation develops, the random generation and rapid collapse of cavitation bubbles produce unstable vibration of the pump system. The high-frequency and broadband pulsation of vibrations distributed in the frequency band of 4–10 kHz can be regarded as typical signals induced by cavitation in the pump at 0.4Qd. The net positive suction head available of the cavitation incipient point is determined to be 9 m at 0.4Qd. The rotor–stator interaction between the impeller and volute affects the vibration signals at individual measurement points, which exhibit clear shaft-frequency characteristics in the frequency band of 0–600 Hz.

1.
R. M.
Perissinotto
,
W.
Monte Verde
,
J. L.
Biazussi
,
N. A. V.
Bulgarelli
,
W. D. P.
Fonseca
,
M. S. d
Castro
,
E. d M.
Franklin
, and
A. C.
Bannwart
, “
Flow visualization in centrifugal pumps: A review of methods and experimental studies
,”
J. Pet. Sci. Eng.
203
,
108582
(
2021
).
2.
N.
Zhang
,
J. X.
Jiang
,
B.
Gao
,
X. K.
Liu
, and
D.
Ni
, “
Numerical analysis of the vortical structure and its unsteady evolution of a centrifugal pump
,”
Renewable Energy
155
,
748
760
(
2020
).
3.
W.
Zhang
,
L. L.
An
,
X. J.
Li
,
F.
Chen
,
L. D.
Sun
,
X. M.
Wang
, and
J.
Cai
, “
Adjustment method and energy consumption of centrifugal pump based on intelligent optimization algorithm
,”
Energy Rep.
8
,
12272
12281
(
2022
).
4.
X. J.
Li
,
B.
Chen
,
X. W.
Luo
, and
Z. C.
Zhu
, “
Effects of flow pattern on hydraulic performance and energy conversion characterisation in a centrifugal pump
,”
Renewable Energy
151
,
475
487
(
2020
).
5.
Y. P.
Lin
,
X. J.
Li
,
B. W.
Li
,
X. Q.
Jia
, and
Z. C.
Zhu
, “
Influence of impeller sinusoidal tubercle trailing-edge on pressure pulsation in a centrifugal pump at nominal flow rate
,”
J. Fluids Eng.
143
(
9
),
091205
(
2021
).
6.
M.
Mansour
,
S.
Kopparthy
, and
D.
Thévenin
, “
Investigations on the effect of rotational speed on the transport of air-water two-phase flows by centrifugal pumps
,”
Int. J. Heat Fluid Flow
94
,
108939
(
2022
).
7.
J. X.
Lu
,
Q.
Chen
,
X. B.
Liu
,
B. S.
Zhu
, and
S. Q.
Yuan
, “
Investigation on pressure fluctuations induced by flow instabilities in a centrifugal pump
,”
Ocean Eng.
258
,
111805
(
2022
).
8.
L. L.
Jiang
,
H. L.
Liu
,
Y.
Wang
,
Y. H.
Mao
,
R. Z.
Zhou
, and
J. B.
Gu
, “
Experimental study on the effect of gas volume fraction on the cavitation performance of a low-specific-speed centrifugal pump
,”
Water
14
(
5
),
798
(
2022
).
9.
Q. F.
Gao
,
J.
Ye
,
B. F.
Wang
, and
J.
Zhao
, “
Investigation of unsteady pressure pulsation and internal flow in a centrifugal pump under low flow rate
,”
Int. J. Fluid Mach. Syst.
12
(
3
),
189
199
(
2019
).
10.
X. Q.
Jia
,
Z. C.
Zhu
,
X. L.
Yu
, and
Y. L.
Zhang
, “
Internal unsteady flow characteristics of centrifugal pump based on entropy generation rate and vibration energy
,”
Arch. Proc. Inst. Mech. Eng., Part E
233
(
3
),
456
473
(
2019
).
11.
B. L.
Cui
,
Y. B.
Zhang
, and
Y. K.
Huang
, “
Analysis of the pressure pulsation and vibration in a low-specific-speed centrifugal pump
,”
J. Fluids Eng.
143
(
2
),
021201
(
2021
).
12.
J. J.
Feng
,
Z. G.
Ge
,
H. H.
Yang
,
G. J.
Zhu
,
C. H.
Li
, and
X. Q.
Luo
, “
Rotating stall characteristics in the vaned diffuser of a centrifugal pump
,”
Ocean Eng.
229
,
108955
(
2021
).
13.
P.
Xue
,
Z. P.
Liu
,
L.
Lu
,
Z. X.
Gao
, and
X. C.
Meng
, “
Experimental research on the rotating stall of a pump turbine in pump mode
,”
Water
11
(
11
),
2426
(
2019
).
14.
Z. C.
Zhu
,
Y. P.
Lin
,
X. J.
Li
,
L. L.
Zhai
, and
T.
Lin
, “
Axial thrust instability analysis and estimation theory of high speed centrifugal pump
,”
Phys. Fluids
34
(
7
),
075118
(
2022
).
15.
L.
Tan
,
B. S.
Zhu
,
S. L.
Cao
, and
Y. M.
Wang
, “
Cavitation flow simulation for a centrifugal pump at a low flow rate
,”
Chin. Sci. Bull.
58
(
8
),
949
952
(
2013
).
16.
Y. X.
Fu
,
J. P.
Yuan
,
S. Q.
Yuan
,
G.
Pace
,
L.
d'Agostino
,
P.
Huang
, and
X. J.
Li
, “
Numerical and experimental analysis of flow phenomena in a centrifugal pump operating under low flow rates
,”
J. Fluids Eng.
137
(
1
),
011102
(
2015
).
17.
G.
Mousmoulis
,
I.
Kassanos
,
G.
Aggidis
, and
I.
Anagnostopoulos
, “
Numerical simulation of the performance of a centrifugal pump with a semi-open impeller under normal and cavitating conditions
,”
Appl. Math. Modell.
89
,
1814
1834
(
2021
).
18.
Y.
Tsujimoto
,
Y.
Yoshida
, and
Y.
Maekawa
, “
Observations of oscillating cavitation of an inducer
,”
J. Fluids Eng.
119
,
775
781
(
1997
).
19.
D.
Li
,
N.
Zhang
,
J. X.
Jiang
,
B.
Gao
,
A. A.
Alubokin
,
W. J.
Zhou
, and
J. L.
Shi
, “
Numerical investigation on the unsteady vortical structure and pressure pulsations of a centrifugal pump with the vaned diffuser
,”
Int. J. Heat Fluid Flow
98
,
109050
(
2022
).
20.
X. J.
Li
,
Z. C.
Zhu
,
Y.
Li
, and
X. P.
Chen
, “
Experimental and numerical investigations of head-flow curve instability of a single-stage centrifugal pump with volute casing
,”
Proc. Inst. Mech. Eng., Part A
230
(
7
),
633
647
(
2016
).
21.
D. H.
Wu
,
Y.
Ren
,
J. G.
Mou
,
Y. Q.
Gu
, and
L. F.
Jiang
, “
Unsteady flow and structural behaviors of centrifugal pump under cavitation conditions
,”
Chin. J. Mech. Eng.
32
(
1
),
17
(
2019
).
22.
A. R.
Al-Obaidi
, “
Detection of cavitation phenomenon within a centrifugal pump based on vibration analysis technique in both time and frequency domains
,”
Exp. Tech.
44
(
3
),
329
347
(
2020
).
23.
A.
Adamkowski
,
A.
Henke
, and
M.
Lewandowski
, “
Resonance of torsional vibrations of centrifugal pump shafts due to cavitation erosion of pump impellers
,”
Eng. Failure Anal.
70
,
56
72
(
2016
).
24.
X. C.
Gan
,
J.
Pei
,
G.
Pavesi
,
S. Q.
Yuan
, and
W. J.
Wang
, “
Application of intelligent methods in energy efficiency enhancement of pump system: A review
,”
Energy Rep.
8
,
11592
11606
(
2022
).
25.
Y.
Wang
,
H. L.
Liu
,
D. X.
Liu
,
S. Q.
Yuan
,
J.
Wang
, and
L. L.
Jiang
, “
Application of the two-phase three-component computational model to predict cavitating flow in a centrifugal pump and its validation
,”
Comput. Fluids
131
,
142
150
(
2016
).
26.
Y.
Xu
,
L.
Tan
,
Y. B.
Liu
, and
S. L.
Cao
, “
Pressure fluctuation and flow pattern of a mixed-flow pump with different blade tip clearances under cavitation condition
,”
Adv. Mech. Eng.
9
(
4
),
1
12
(
2017
).
27.
M.
Rakibuzzaman
,
K.
Kim
, and
S. H.
Suh
, “
Numerical and experimental investigation of cavitation flows in a multistage centrifugal pump
,”
J. Mech. Sci. Technol.
32
(
3
),
1071
1078
(
2018
).
28.
L.
Tan
,
B. S.
Zhu
,
Y. C.
Wang
,
S. L.
Cao
, and
S. B.
Gui
, “
Numerical study on characteristics of unsteady flow in a centrifugal pump volute at partial load condition
,”
Eng. Comput.
32
(
6
),
1549
1566
(
2015
).
29.
G. S.
Zhao
,
N.
Liang
,
Y.
Zhang
,
L. L.
Cao
, and
D. Z.
Wu
, “
Dynamic behaviors of blade cavitation in a water jet pump with inlet guide vanes: Effects of inflow non-uniformity and unsteadiness
,”
Appl. Ocean Res.
117
,
102889
(
2021
).
30.
B.
Gao
,
P. M.
Guo
,
N.
Zhang
,
Z.
Li
, and
M. G.
Yang
, “
Experimental investigation on cavitating flow induced vibration characteristics of a low specific speed centrifugal pump
,”
Shock Vib.
2017
,
6568930
.
31.
S. Y.
Li
,
C.
Ning
,
Y.
Peng
,
D. Z.
Wu
, and
J.
Antoni
, “
Cyclostationary approach to detect flow-induced effects on vibration signals from centrifugal pumps
,”
Mech. Syst. Signal Process.
114
(
1
),
275
289
(
2019
).
32.
Y.
Li
,
G.
Feng
,
X.
Li
,
Q.
Si
, and
Z.
Zhu
, “
An experimental study on the cavitation vibration characteristics of a centrifugal pump at normal flow rate
,”
J. Mech. Sci. Technol.
32
(
10
),
4711
4720
(
2018
).
33.
A. R.
Al-Obaidi
, “
Investigation of effect of pump rotational speed on performance and detection of cavitation within a centrifugal pump using vibration analysis
,”
Heliyon
5
(
6
),
e01910
(
2019
).
34.
G.
Mousmoulis
,
C.
Yiakopoulos
,
G.
Aggidis
,
I.
Antoniadis
, and
I.
Anagnostopoulos
, “
Application of Spectral Kurtosis on vibration signals for the detection of cavitation in centrifugal pumps
,”
Appl. Acoust.
182
(
5
),
108289
(
2021
).
35.
X. H.
Luo
,
J.
Yang
, and
L.
Song
, “
Analysis and research on vibration characteristics of nuclear centrifugal pumps at low flow rates
,”
Energy Rep.
8
,
1273
1282
(
2022
).
36.
J. X.
Lu
,
S. Q.
Yuan
,
Y.
Luo
,
J. P.
Yuan
,
B. L.
Zhou
, and
H.
Sun
, “
Numerical and experimental investigation on the development of cavitation in a centrifugal pump
,”
Proc. Inst. Mech. Eng., Part E
230
(
3
),
171
182
(
2016
).
37.
J. X.
Lu
,
S. Q.
Yuan
,
S.
Parameswaran
,
J. P.
Yuan
,
X. D.
Ren
, and
Q. R.
Si
, “
Investigation on the vibration and flow instabilities induced by cavitation in a centrifugal pump
,”
Adv. Mech. Eng.
9
(
4
),
1
11
(
2017
).
38.
C. S.
Wu
,
K.
Pu
,
C. Q.
Li
,
P.
Wu
,
B.
Huang
, and
D. Z.
Wu
, “
Blade redesign based on secondary flow suppression to improve energy efficiency of a centrifugal pump
,”
Energy
246
,
123394
(
2022
).
39.
Z. D.
Chen
,
S. D.
Yang
,
X. J.
Li
,
Y. P.
Li
, and
L. M.
Li
, “
Investigation on leakage vortex cavitation and corresponding enstrophy characteristics in a liquid nitrogen inducer
,”
Cryogenics
129
,
103606
(
2023
).
40.
J. X.
Lu
,
S. Q.
Yuan
,
P.
Siva
,
J. P.
Yuan
,
X. D.
Ren
, and
B. L.
Zhou
, “
The characteristics investigation under the unsteady cavitation condition in a centrifugal pump
,”
J. Mech. Sci. Technol.
31
(
3
),
1213
1222
(
2017
).
41.
B.
Xu
,
K. Y.
Liu
,
Y. L.
Deng
,
X.
Shen
,
H.
Wang
,
D. S.
Zhang
, and
Y. M.
Jiao
, “
The characteristics of unsteady cavitation around a NACA0015 hydrofoil with emphasis on the thermodynamic effect
,”
Ocean Eng.
264
,
112418
(
2022
).
42.
R.
Tiwari
,
D. J.
Bordoloi
, and
A.
Dewangan
, “
Blockage and cavitation detection in centrifugal pumps from dynamic pressure signal using deep learning algorithm
,”
Measurement
173
,
108676
(
2021
).
43.
S. F.
Zhang
,
X. J.
Li
,
B.
Hu
,
Y.
Liu
, and
Z. C.
Zhu
, “
Numerical investigation of attached cavitating flow in thermo-sensitive fluid with special emphasis on thermal effect and shedding dynamics
,”
Int. J. Hydrogen Energy
44
(
5
),
3170
3184
(
2019
).
44.
D. H.
He
,
L.
Zhao
,
Z.
Chang
,
Z. D.
Zhang
,
P. C.
Guo
, and
B. F.
Bai
, “
On the performance of a centrifugal pump under bubble inflow: Effect of gas-liquid distribution in the impeller
,”
J. Pet. Sci. Eng.
203
,
108587
(
2021
).
45.
L.
Alfayez
,
D.
Mba
, and
G.
Dyson
, “
The application of acoustic emission for detecting incipient cavitation and the best efficiency point of a 60kW centrifugal pump: Case study
,”
NDT E Int.
38
(
5
),
354
358
(
2005
).
46.
A.
Kumar
and
R.
Kumar
, “
Time-frequency analysis and support vector machine in automatic detection of defect from vibration signal of centrifugal pump
,”
Measurement
108
,
119
133
(
2017
).
47.
Z.
Tong
,
H.
Liu
,
X. E.
Cao
,
D.
Westerdahld
, and
X.
Jin
, “
Cavitation diagnosis for water distribution pumps: An early-stage approach combing vibration signal-based neural network with high-speed photography
,”
Sustain. Ener. Technol. Asses.
55
,
102919
(
2023
).
48.
Y. L.
Fang
,
X. T.
Liu
,
J.
Xing
,
Z. R.
Li
, and
Y.
Zhang
, “
Substructure damage identification based on sensitivity of power spectral density
,”
J. Sound Vib.
545
,
117451
(
2023
).
49.
R.
Zhou
,
H.
Chen
,
L.
Dong
,
H.
Liu
,
Z.
Chen
,
Y.
Zhang
, and
Z.
Cheng
, “
Effect of vibration and noise measuring points distribution on the sensitivity of pump cavitation diagnosis
,”
Strojniški vestnik - J. Mech. Eng.
68
(
5
),
325
338
(
2022
).
50.
J. X.
Lu
,
F.
Wu
,
X. B.
Liu
,
B. S.
Zhu
,
S. Q.
Yuan
, and
J.
Wang
, “
Investigation of the mechanism of unsteady flow induced by cavitation at the tongue of a centrifugal pump based on the proper orthogonal decomposition method
,”
Phys. Fluids
34
(
10
),
105113
(
2022
).
You do not currently have access to this content.