Numerical solutions of the precession-driven flows inside a sphere are presented by means of a previously proposed spectral method based on helical wave decomposition, and flow properties are investigated in helical wave spectral space. Four different flow states can be generated under precession, including the steady, periodic, quasi-periodic, and turbulent ones. Flow fields are decomposed into two components of opposite polarity by the sign of the helicity of each helical wave. It is found that the flows in the steady and periodic states are polarity-symmetric, while the quasi-periodic and turbulent states are polarity-asymmetric, regarding the kinetic energy distribution for each polarity. The two components of opposite polarity for the quasi-periodic case have exactly the same frequency spectra with respect to the kinetic energy, differing from the turbulent case. At high Reynolds numbers, the helical wave energy spectra show a scaling of λ − 7 / 3, which is different from the scaling of k − 2 for the homogeneous turbulence under precession. The helical wave spectral dynamic equation is derived for the investigation of the mechanism of the turbulent flows. The energy to sustain the precession-driven flows comes from the boundary motion, which is equivalent to a body force being enforced on all scales in spectral space. The energy is concentrated on the largest scales and transferred to smaller scales through the nonlinear interaction. In contrast, the Coriolis force gives rise to an inverse cascade that transfers energy from small to large scales.

1.
M.
Le Bars
,
D.
Cébron
, and
P.
Le Gal
, “
Flows driven by libration, precession, and tides
,”
Annu. Rev. Fluid Mech.
47
,
163
193
(
2015
).
2.
J.
Rekier
, “
Free core nutation and its relation to the spin-over mode
,”
Planet. Sci. J.
3
,
133
(
2022
).
3.
C.
Guervilly
,
P.
Cardin
, and
N.
Schaeffer
, “
Turbulent convective length scale in planetary cores
,”
Nature
570
,
368
371
(
2019
).
4.
W.
Malkus
, “
Precession of the earth as the cause of geomagnetism: Experiments lend support to the proposal that precessional torques drive the earth's dynamo
,”
Science
160
,
259
264
(
1968
).
5.
A.
Tilgner
, “
Precession driven dynamos
,”
Phys. Fluids
17
,
034104
(
2005
).
6.
V.
Kumar
,
F.
Pizzi
,
A.
Giesecke
,
J.
Šimkanin
,
T.
Gundrum
,
M.
Ratajczak
, and
F.
Stefani
, “
The effect of nutation angle on the flow inside a precessing cylinder and its dynamo action
,”
Phys. Fluids
35
,
014114
(
2023
).
7.
A.
Giesecke
,
T.
Vogt
,
T.
Gundrum
, and
F.
Stefani
, “
Nonlinear large scale flow in a precessing cylinder and its ability to drive dynamo action
,”
Phys. Rev. Lett.
120
,
024502
(
2018
).
8.
J. M.
Lopez
and
F.
Marques
, “
Rapidly rotating precessing cylinder flows: Forced triadic resonances
,”
J. Fluid Mech.
839
,
239
270
(
2018
).
9.
T.
Albrecht
,
H. M.
Blackburn
,
J. M.
Lopez
,
R.
Manasseh
, and
P.
Meunier
, “
On triadic resonance as an instability mechanism in precessing cylinder flow
,”
J. Fluid Mech.
841
,
R3
(
2018
).
10.
M.
Wilbert
,
A.
Giesecke
, and
R.
Grauer
, “
Numerical investigation of the flow inside a precession-driven cylindrical cavity with additional baffles using an immersed boundary method
,”
Phys. Fluids
34
,
096607
(
2022
).
11.
D.
Gao
,
P.
Meunier
,
S.
Le Dizès
, and
C.
Eloy
, “
Zonal flow in a resonant precessing cylinder
,”
J. Fluid Mech.
923
,
A29
(
2021
).
12.
S.
Goto
,
Y.
Horimoto
,
T.
Kaneko
,
K.
Oya
,
Y.
Sugitani
,
S.
Aritsu
,
M.
Yoshida
,
H.
Ohyama
,
K.
Eguchi
,
S.
Kukimoto
et al, “
Precessing cylinder as high-shear-rate mixer: Application to emulsification
,”
Phys. Fluids
35
,
035139
(
2023
).
13.
J.
Noir
,
D.
Jault
, and
P.
Cardin
, “
Numerical study of the motions within a slowly precessing sphere at low Ekman number
,”
J. Fluid Mech.
437
,
283
299
(
2001
).
14.
S.
Goto
,
N.
Ishii
,
S.
Kida
, and
M.
Nishioka
, “
Turbulence generator using a precessing sphere
,”
Phys. Fluids
19
,
061705
(
2007
).
15.
Y.
Horimoto
and
S.
Goto
, “
Sustaining mechanism of small-scale turbulent eddies in a precessing sphere
,”
Phys. Rev. Fluids
2
,
114603
(
2017
).
16.
K.
Zhang
,
K. H.
Chan
, and
X.
Liao
, “
On fluid flows in precessing spheres in the mantle frame of reference
,”
Phys. Fluids
22
,
116604
(
2010
).
17.
R.
Hollerbach
,
C.
Nore
,
P.
Marti
,
S.
Vantieghem
,
F.
Luddens
, and
J.
Léorat
, “
Parity-breaking flows in precessing spherical containers
,”
Phys. Rev. E
87
,
053020
(
2013
).
18.
K.
Komoda
and
S.
Goto
, “
Three-dimensional flow structures of turbulence in precessing spheroids
,”
Phys. Rev. Fluids
4
,
014603
(
2019
).
19.
K.
Zhang
,
K. H.
Chan
, and
X.
Liao
, “
On precessing flow in an oblate spheroid of arbitrary eccentricity
,”
J. Fluid Mech.
743
,
358
384
(
2014
).
20.
C.
Nobili
,
P.
Meunier
,
B.
Favier
, and
M.
Le Bars
, “
Hysteresis and instabilities in a spheroid in precession near the resonance with the tilt-over mode
,”
J. Fluid Mech.
909
,
A17
(
2021
).
21.
F.
Burmann
and
J.
Noir
, “
Experimental study of the flows in a non-axisymmetric ellipsoid under precession
,”
J. Fluid Mech.
932
,
A24
(
2022
).
22.
J.
Vidal
and
D.
Cébron
, “
Precession-driven flows in stress-free ellipsoids
,”
J. Fluid Mech.
954
,
A5
(
2023
).
23.
A.
Tilgner
and
F. H.
Busse
, “
Fluid flows in precessing spherical shells
,”
J. Fluid Mech.
426
,
387
396
(
2001
).
24.
D.
Cébron
,
R.
Laguerre
,
J.
Noir
, and
N.
Schaeffer
, “
Precessing spherical shells: Flows, dissipation, dynamo and the lunar core
,”
Geophys. J. Int.
219
,
S34
S57
(
2019
).
25.
S.
Lorenzani
and
A.
Tilgner
, “
Inertial instabilities of fluid flow in precessing spheroidal shells
,”
J. Fluid Mech.
492
,
363
379
(
2003
).
26.
H.
Poincaré
, “
Sur la précession des corps déformables
,”
Bull. Astron.
27
,
321
356
(
1910
).
27.
S.
Kida
,
K.
Nakayama
, and
N.
Honda
, “
Streamline tori in a precessing sphere at small Reynolds numbers
,”
Fluid Dyn. Res.
41
,
011401
(
2009
).
28.
S.
Kida
, “
Steady flow in a rapidly rotating sphere with weak precession
,”
J. Fluid Mech.
680
,
150
193
(
2011
).
29.
S.
Kida
and
K.
Nakayama
, “
Helical flow structure in a precessing sphere
,”
J. Phys. Soc. Jpn.
77
,
054401
(
2008
).
30.
S.
Goto
,
A.
Matsunaga
,
M.
Fujiwara
,
M.
Nishioka
,
S.
Kida
,
M.
Yamato
, and
S.
Tsuda
, “
Turbulence driven by precession in spherical and slightly elongated spheroidal cavities
,”
Phys. Fluids
26
,
055107
(
2014
).
31.
S.
Goto
,
M.
Shimizu
, and
G.
Kawahara
, “
Turbulent mixing in a precessing sphere
,”
Phys. Fluids
26
,
115106
(
2014
).
32.
R.
Kerswell
, “
The instability of precessing flow
,”
Geophys. Astrophys. Fluid Dyn.
72
,
107
144
(
1993
).
33.
S.
Lorenzani
and
A.
Tilgner
, “
Fluid instabilities in precessing spheroidal cavities
,”
J. Fluid Mech.
447
,
111
128
(
2001
).
34.
S.
Kida
, “
Instability by weak precession of the flow in a rotating sphere
,”
Procedia IUTAM
7
,
183
192
(
2013
).
35.
S.
Kida
, “
Instability by localized disturbances in critical region in a precessing sphere
,”
Fluid Dyn. Res.
52
,
015504
(
2019
).
36.
Y.
Lin
,
P.
Marti
, and
J.
Noir
, “
Shear-driven parametric instability in a precessing sphere
,”
Phys. Fluids
27
,
046601
(
2015
).
37.
A.
Khlifi
,
A.
Salhi
,
S.
Nasraoui
,
F.
Godeferd
, and
C.
Cambon
, “
Spectral energy scaling in precessing turbulence
,”
Phys. Rev. E
98
,
011102
(
2018
).
38.
F.
Pizzi
,
G.
Mamatsashvili
,
A.
Barker
,
A.
Giesecke
, and
F.
Stefani
, “
Interplay between geostrophic vortices and inertial waves in precession-driven turbulence
,”
Phys. Fluids
34
,
125135
(
2022
).
39.
Z.
Yoshida
and
Y.
Giga
, “
Remarks on spectra of operator rot
,”
Math. Z.
204
,
235
245
(
1990
).
40.
Z.-J.
Liao
and
W.-D.
Su
, “
Kolmogorov's hypotheses and global energy spectrum of turbulence
,”
Phys. Fluids
27
,
041701
(
2015
).
41.
F.
Waleffe
, “
Inertial transfers in the helical decomposition
,”
Phys. Fluids A: Fluid Dyn.
5
,
677
685
(
1993
).
42.
L.
Biferale
,
S.
Musacchio
, and
F.
Toschi
, “
Split energy–helicity cascades in three-dimensional homogeneous and isotropic turbulence
,”
J. Fluid Mech.
730
,
309
327
(
2013
).
43.
A.
Briard
,
L.
Biferale
, and
T.
Gomez
, “
Closure theory for the split energy-helicity cascades in homogeneous isotropic homochiral turbulence
,”
Phys. Rev. Fluids
2
,
102602
(
2017
).
44.
A.
Alexakis
, “
Helically decomposed turbulence
,”
J. Fluid Mech.
812
,
752
770
(
2017
).
45.
F.
Plunian
,
A.
Teimurazov
,
R.
Stepanov
, and
M. K.
Verma
, “
Inverse cascade of energy in helical turbulence
,”
J. Fluid Mech.
895
,
A13
(
2020
).
46.
Z.
Yan
,
X.
Li
,
C.
Yu
,
J.
Wang
, and
S.
Chen
, “
Dual channels of helicity cascade in turbulent flows
,”
J. Fluid Mech.
894
,
R2
(
2020
).
47.
P. D.
Mininni
and
A.
Pouquet
, “
Rotating helical turbulence. I. Global evolution and spectral behavior
,”
Phys. Fluids
22
,
035105
(
2010
).
48.
M.
Buzzicotti
,
H.
Aluie
,
L.
Biferale
, and
M.
Linkmann
, “
Energy transfer in turbulence under rotation
,”
Phys. Rev. Fluids
3
,
034802
(
2018
).
49.
M.
Fathali
and
S.
Khoei
, “
Spectral energy transfer in a viscoelastic homogeneous isotropic turbulence
,”
Phys. Fluids
31
,
095105
(
2019
).
50.
S. K.
Rathor
,
M. K.
Sharma
,
S. S.
Ray
, and
S.
Chakraborty
, “
Bridging inertial and dissipation range statistics in rotating turbulence
,”
Phys. Fluids
32
,
095104
(
2020
).
51.
R.
Hu
,
X.
Li
, and
C.
Yu
, “
Transfers of energy and helicity in helical rotating turbulence
,”
J. Fluid Mech.
946
,
A19
(
2022
).
52.
Y.-T.
Yang
,
W.-D.
Su
, and
J.-Z.
Wu
, “
Helical-wave decomposition and applications to channel turbulence with streamwise rotation
,”
J. Fluid Mech.
662
,
91
122
(
2010
).
53.
Y.-T.
Yang
and
J.-Z.
Wu
, “
Channel turbulence with spanwise rotation studied using helical wave decomposition
,”
J. Fluid Mech.
692
,
137
152
(
2012
).
54.
Z.
Yan
,
X.
Li
,
J.
Wang
, and
C.
Yu
, “
Effect of pressure on joint cascade of kinetic energy and helicity in compressible helical turbulence
,”
Phys. Rev. E
99
,
033114
(
2019
).
55.
Z.
Yan
,
X.
Li
,
C.
Yu
, and
J.
Wang
, “
Cross-chirality transfer of kinetic energy and helicity in compressible helical turbulence
,”
Phys. Rev. Fluids
5
,
084604
(
2020
).
56.
Y.
Yang
and
J.-Z.
Zhu
, “
Turbulence compressibility reduction with helicity
,”
Phys. Fluids
34
,
045113
(
2022
).
57.
A.
Alexakis
and
L.
Biferale
, “
Cascades and transitions in turbulent flows
,”
Phys. Rep.
767–769
,
1
101
(
2018
).
58.
Z.-J.
Liao
and
W.-D.
Su
, “
A Galerkin spectral method based on helical-wave decomposition for the incompressible Navier–Stokes equations
,”
Int. J. Numer. Methods Fluids
78
,
140
161
(
2015
).
59.
S.
Chandrasekhar
and
P. C.
Kendall
, “
On force-free magnetic fields
,”
Astrophys. J.
126
,
457
(
1957
).
60.
J.
Cantarella
,
D.
DeTurck
,
H.
Gluck
, and
M.
Teytel
, “
The spectrum of the curl operator on spherically symmetric domains
,”
Phys. Plasmas
7
,
2766
2775
(
2000
).
61.
D. M.
Healy
,
D. N.
Rockmore
,
P. J.
Kostelec
, and
S.
Moore
, “
FFTs for the 2-sphere-improvements and variations
,”
J. Fourier Anal. Appl.
9
,
341
385
(
2003
).
62.
A.
Tilgner
, “
Magnetohydrodynamic flow in precessing spherical shells
,”
J. Fluid Mech.
379
,
303
318
(
1999
).
63.
V.
Dallas
and
S. M.
Tobias
, “
Forcing-dependent dynamics and emergence of helicity in rotating turbulence
,”
J. Fluid Mech.
798
,
682
695
(
2016
).
64.
M. K.
Sharma
,
M. K.
Verma
, and
S.
Chakraborty
, “
On the energy spectrum of rapidly rotating forced turbulence
,”
Phys. Fluids
30
,
115102
(
2018
).
You do not currently have access to this content.