A five-stage centrifugal pump is utilized to investigate the interstage flow characteristics of the multistage centrifugal pump as turbine (PAT). The simulation results of performance are verified by comparing with the experimental results. Owing to the distinct structural attributes, significant differences in flow occur between the first stage and the other stages of the multistage PAT. To enhance the understanding of these disparities and explore their repercussions, this study focuses on analyzing the flow within the impellers in the first and second stages by a deterministic analysis. The main conclusions are as follows: The discrepancies in the inflow conditions are the major reason for the dissimilarities in the flow of impellers between stages. The impact loss generated by the misalignment between the positive guide vane outlet angle and the impeller inlet angle leads to flow deviation between impeller passages and affects the internal flow pattern. The unsteadiness under low flow rates is mostly produced by the spatial gradient of the blade-to-blade nonuniformities, which is relevant to the relative position between blades and the positive guide vanes. At high flow rates, especially in the second-stage impeller, the pure unsteady term is the primary cause of flow unsteadiness as a result of the flow separation induced by interactions between the blades and the positive guide vanes. This study can provide some references for the practical operation and performance optimization of the multistage PATs in the future.

1.
M.
Binama
,
W.
Su
,
X.
Liu
,
F.
Li
,
X.
Wei
, and
S.
An
, “
Investigation on pump as turbine (PAT) technical aspects for micro hydropower schemes: A state-of-the-art review
,”
Renewable Sustainable Energy Rev.
79
,
148
179
(
2017
).
2.
D.
Satish
,
A.
Doshi
, and
M.
Bade
, “
Review on pump as turbine application in water distribution networks for power generation
,”
AIP Conf. Proc.
2341
,
030035
(
2021
).
3.
A.
Carravetta
,
S. D.
Houreh
, and
H. M.
Ramos
,
Pumps as Turbines
, Springer Tracts in Mechanical Engineering (
Springer International Publishing
,
2018
).
4.
R.
Dang
,
T.
Wang
,
Y.
Fang
,
H.
Yu
,
M.
Zhou
, and
X.
Zhang
, “
Effect of blade curve shape on the hydraulic performance and pressure pulsation of a pump as turbine
,”
Phys. Fluids
34
,
085130
(
2022
).
5.
S.
Huang
,
G.
Qiu
,
X.
Su
,
J.
Chen
, and
W.
Zou
, “
Performance prediction of a centrifugal pump as turbine using rotor-volute matching principle
,”
Renewable Energy
108
,
64
71
(
2017
).
6.
M.
Binama
,
W.
Su
,
W.
Cai
,
X.
Liu
,
A.
Muhirwa
,
B.
Li
, and
E.
Bisengimana
, “
Blade trailing edge position influencing pump as turbine (PAT) pressure field under part-load conditions
,”
Renewable Energy
136
,
33
47
(
2019
).
7.
S.
Yang
,
H.
Liu
,
F.
Kong
,
B.
Xia
, and
L.
Tan
, “
Effects of the radial gap between impeller tips and volute tongue influencing the performance and pressure pulsations of pump as turbine
,”
J. Fluids Eng.
136
,
054501
(
2014
).
8.
R.
Barrio
,
J.
Parrondo
, and
E.
Blanco
, “
Numerical analysis of the unsteady flow in the near-tongue region in a volute-type centrifugal pump for different operating points
,”
Comput. Fluids
39
,
859
870
(
2010
).
9.
Y.
Gao
,
X.
Fan
, and
R.
Dang
, “
Numerical characterization of the effects of flow rate on pressure and velocity distribution of pump as turbine
,”
Curr. Sci.
117
,
57
(
2019
).
10.
Z. H.
Liu
,
T.
Yukawa
,
K.
Miyagawa
,
T.
Fahimi
, and
M.
Tahani
, “
Characteristics and internal flow of a low specific speed pump used as a turbine
,”
IOP Conf. Ser.: Earth Environ. Sci.
240
,
042007
(
2019
).
11.
A.
Yu
,
Y.
Tang
,
Q.
Tang
,
J.
Cai
,
L.
Zhao
, and
X.
Ge
, “
Energy analysis of Francis turbine for various mass flow rate conditions based on entropy production theory
,”
Renewable Energy
183
,
447
458
(
2022
).
12.
A.
Yu
,
Q.
Tang
,
H.
Chen
, and
D.
Zhou
, “
Investigations of the thermodynamic entropy evaluation in a hydraulic turbine under various operating conditions
,”
Renewable Energy
180
,
1026
1043
(
2021
).
13.
W.
Li
, “
Optimising prediction model of centrifugal pump as turbine with viscosity effects
,”
Appl. Math. Modell.
41
,
375
398
(
2017
).
14.
W.
Li
, “
Effects of viscosity on turbine mode performance and flow of a low specific speed centrifugal pump
,”
Appl. Math. Modell.
40
,
904
926
(
2016
).
15.
T.
Yu
,
Z.
Shuai
,
X.
Wang
,
J.
Jian
,
J.
He
,
W.
Li
, and
C.
Jiang
, “
Research on wake and potential flow effects of rotor–stator interaction in a centrifugal pump with guided vanes
,”
Phys. Fluids
35
,
037107
(
2023
).
16.
P.
Singh
and
F.
Nestmann
, “
Internal hydraulic analysis of impeller rounding in centrifugal pumps as turbines
,”
Exp. Therm. Fluid Sci.
35
,
121
134
(
2011
).
17.
Z.
Qian
,
F.
Wang
,
Z.
Guo
, and
J.
Lu
, “
Performance evaluation of an axial-flow pump with adjustable guide vanes in turbine mode
,”
Renewable Energy
99
,
1146
1152
(
2016
).
18.
F.
Shi
,
J.
Yang
, and
X.
Wang
, “
Analysis on the effect of variable guide vane numbers on the performance of pump as turbine
,”
Adv. Mech. Eng.
10
,
1687814018780796
(
2018
).
19.
R.
Barrio
,
J.
Fernández
,
E.
Blanco
,
J.
Parrondo
, and
A.
Marcos
, “
Performance characteristics and internal flow patterns in a reverse-running pump–turbine
,”
Proc. Inst. Mech. Eng., Part C
226
,
695
708
(
2012
).
20.
W.
Li
,
E.
Li
,
L.
Ji
,
L.
Zhou
,
W.
Shi
, and
Y.
Zhu
, “
Mechanism and propagation characteristics of rotating stall in a mixed-flow pump
,”
Renewable Energy
153
,
74
92
(
2020
).
21.
W.
Li
,
L.
Ji
,
E.
Li
,
L.
Zhou
, and
R. K.
Agarwal
, “
Effect of tip clearance on rotating stall in a mixed-flow pump
,”
J. Turbomach.
143
,
091013
(
2021
).
22.
W.
Li
,
L.
Ji
,
E.
Li
,
W.
Shi
,
R.
Agarwal
, and
L.
Zhou
, “
Numerical investigation of energy loss mechanism of mixed-flow pump under stall condition
,”
Renewable Energy
167
,
740
760
(
2021
).
23.
Z.
Yuan
,
Y.
Zhang
,
W.
Zhou
, and
C.
Wang
, “
Hydraulic loss analysis in a pump-turbine with special emphasis on local rigid vortex and shear
,”
Phys. Fluids
34
,
125101
(
2022
).
24.
K.
Kan
,
F.
Zhao
,
H.
Xu
,
J.
Feng
,
H.
Chen
, and
W.
Liu
, “
Energy performance evaluation of an axial-flow pump as turbine under conventional and reverse operating modes based on an energy loss intensity model
,”
Phys. Fluids
35
,
015125
(
2023
).
25.
M.
Giles
,
UNSFLO: A Numerical Method for Unsteady Inviscid Flow in Turbomachinery
(
Gas Turbine Laboratory, Massachusetts Institute of Technology
,
Cambridge, Massachusetts
,
1988
).
26.
L.
He
and
W.
Ning
, “
Efficient approach for analysis of unsteady viscous flows in turbomachines
,”
AIAA J.
36
,
2005
2012
(
1998
).
27.
M. M.
Rai
, “
Navier-Stokes simulations of rotor/stator interaction using patched and overlaid grids
,”
J. Propul. Power
3
,
387
396
(
1987
).
28.
J. J.
Adamczyk
, “
Model equation for simulating flows in multistage turbomachinery
,” Report No.
NASA-TM-86869
,
1984
.
29.
J. J.
Adamczyk
, “
Aerodynamic analysis of multistage turbomachinery flows in support of aerodynamic design
,”
J. Turbomach.
122
,
189
217
(
2000
).
30.
F.
Leboeuf
, “
Unsteady flow analysis in transonic turbine and compressor stages
,”
VKI Lect. Ser.
1
,
1
(
2002
).
31.
J. M. F.
Oro
,
J.
González
,
K. M. A.
Díaz
, and
F. I. G.
Colón
, “
Decomposition of deterministic unsteadiness in a centrifugal turbomachine: Nonlinear interactions between the impeller flow and volute for a double suction pump
,”
J. Fluids Eng.
133
,
011103
(
2011
).
32.
J. M. F.
Oro
,
J.
González
,
R. B.
Perotti
, and
M. G.
Vega
, “
Numerical analysis of the deterministic stresses associated to impeller-tongue interactions in a single volute centrifugal pump
,”
J. Fluids Eng.
141
,
091104
(
2019
).
33.
J. M. F.
Oro
,
R. B.
Perotti
,
M. G.
Vega
, and
J.
Gonzalez
, “
Effect of the radial gap size on the deterministic flow in a centrifugal pump due to impeller-tongue interactions
,” arXiv:4122770 (
2022
).
34.
H.
Shoji
and
H.
Ohashi
, “
Lateral fluid forces on whirling centrifugal impeller (1st report: theory)
,”
J. Fluids Eng.
109
,
94
99
(
1987
).
35.
W.
Su
,
X.
Li
,
C.
Lan
,
S.
An
,
J.
Wang
, and
F.
Li
, “
Chaotic dynamic characteristics of pressure fluctuation signals in hydro-turbine
,”
J. Mech. Sci. Technol.
30
,
5009
5017
(
2016
).
36.
R. B.
Abernethy
,
R. P.
Benedict
, and
R. B.
Dowdell
, “
ASME measurement uncertainty
,”
J. Fluids Eng.
107
,
161
164
(
1985
).
37.
I. B.
Celik
,
U.
Ghia
,
P. J.
Roache
, and
C. J.
Freitas
, “
Procedure for estimation and reporting of uncertainty due to discretization in CFD applications
,”
J. Fluids Eng.
130
(7),
078001
(
2008
).
38.
F. A.
Lyman
, “
On the conservation of rothalpy in turbomachines
,” in
Proceedings of the Turbo Expo: Power for Land, Sea, and Air
(
American Society of Mechanical Engineers
,
1992
), Vol.
78934
, p.
V001T01A078
.
39.
H.
Stel
,
T.
Sirino
,
F. J.
Ponce
,
S.
Chiva
, and
R. E. M.
Morales
, “
Numerical investigation of the flow in a multistage electric submersible pump
,”
J. Pet. Sci. Eng.
136
,
41
54
(
2015
).
40.
S.
Yang
,
F.
Kong
,
H.
Chen
, and
X.
Su
, “
Effects of blade wrap angle influencing a pump as turbine
,”
J. Fluids Eng.
134
,
061102
(
2012
).
41.
L.
Zhang
,
Y.
Li
,
Z.
Zhang
,
J.
Chen
, and
D.
Chen
, “
Influence of blade number on performance of multistage hydraulic turbine in turbine mode
,”
Energy Sci. Eng.
10
,
903
917
(
2022
).
42.
T.
Lin
,
X.
Li
,
Z.
Zhu
,
R.
Xie
, and
Y.
Lin
, “
Investigation of flow separation characteristics in a pump as turbines impeller under the best efficiency point condition
,”
J. Fluids Eng.
143
,
061204
(
2021
).
You do not currently have access to this content.