In this paper, a model of the development of a quantum turbulence in its initial stage is proposed. The origin of the turbulence in the suggested model is the decay of vortex loops with an internal structure. We consider the initial stage of this process, before an equilibrium state is established. As result of our study, the density matrix of developing turbulent flow is calculated. The quantization scheme of the classical vortex rings system is based on the approach proposed by the author earlier.

1.
J. I.
Polanco
,
N. P.
Müller
, and
G.
Krstulovic
, “
Vortex clustering, polarisation and circulation intermittency in classical and quantum turbulence
,”
Nat. Commun.
12
,
7090
(
2021
).
2.
U.
Giuriato
and
G.
Krstulovic
, “
Active and finite-size particles in decaying quantum turbulence at low temperature
,”
Phys. Rev. Fluids
5
,
054608
(
2020
).
3.
K.
Fukagata
, “
Towards quantum computing of turbulence
,”
Nat. Comput. Sci.
2
,
68
69
(
2022
).
4.
N.
Gourianov
,
M.
Lubasch
,
S.
Dolgov
,
Q. Y.
van den Berg
,
H.
Babaee
,
P.
Givi
,
M.
Kiffner
, and
D.
Jaksch
, “
A quantum-inspired approach to exploit turbulence structures
,”
Nat. Comput. Sci.
2
,
30
37
(
2022
).
5.
L.
Madeira
,
M. A.
Caracanhas
,
F. E. A.
dos Santos
, and
V. S.
Bagnato
, “
Quantum turbulence in quantum gases
,”
Annu. Rev. Condens. Matter Phys.
11
,
37
56
(
2020
).
6.
W. F.
Vinen
, “
An introduction to quantum turbulence
,”
J. Low Temp. Phys.
145
,
7
24
(
2006
).
7.
Progress in Low Temperature Physics, Quantum Turbulence
, edited by
M.
Tsubota
and
W. P.
Halperin
(
Elsevier
,
Amsterdam
,
2009
), Vol.
XVI
.
8.
R. P.
Feynman
,
Progress in Low Temperature Physics
, edited by
C. J.
Gorter
(
North-Holland
,
Amsterdam
,
1955
), Vol.
1
, p.
17
.
9.
R. J.
Donnely
,
Quantum Vortices in Helium II
(
Cambridge University Press
,
1991
).
10.
M.
Tsubota
,
K.
Fujimoto
, and
S.
Yui
, “
Numerical studies of quantum turbulence
,”
J. Low. Temp. Phys
188
,
119
(
2017
).
11.
S. K.
Nemirovskii
, “
Nonuniform quantum turbulence in superfluids
,”
Phys. Rev. B
97
,
134511
(
2018
).
12.
N. P.
Müller
,
J. I.
Polanco
, and
G.
Krstulovic
, “
Intermittency of velocity circulation in quantum turbulence
,”
Phys. Rev. X
11
,
011053
(
2021
).
13.
S. V.
Talalov
, “
Small oscillations of a vortex ring: Hamiltonian formalism and quantization
,”
Eur. J. Mech. B/Fluids
92
,
100
106
(
2022
).
14.
S. V.
Talalov
, “
Closed vortex filament in a cylindrical domain: Circulation quantization
,”
Phys. Fluids
34
,
041702
(
2022
).
15.
S. V.
Alekseenko
,
P. A.
Kuibin
, and
V. L.
Okulov
,
Theory of Concentrated Vortices
(
Springer-Verlag
,
2007
).
16.
G. K.
Batchelor
,
An Introducton to Fluid Dynamics
(
Cambrige University Press
,
1970
).
17.
W.
Thomson
, “
II. On vortex atoms
,”
Philos. Mag.
34
,
15
24
(
1867
).
18.
K.
Moffatt
, “
Vortex dynamics: The legacy of Helmholtz and Kelvin
,”
Russ. J. Nonlinear Dyn.
2
,
401
410
(
2006
).
19.
A. S.
Bradley
and
B. P.
Anderson
, “
Energy spectra of vortex distributions in two-dimensional quantum turbulence
,”
Phys. Rev. X
2
,
041001
(
2012
).
20.
I.
Prigogine
,
From Being to Becoming: Time and Complexity in the Physical Sciences
(
W. H. Freeman and Company
,
1980
).
21.
C.
Bender
,
S.
Boettcher
, and
P.
Meisinger
, “
PT-symmetric quantum mechanics
,”
J. Math. Phys.
40
,
2201
2229
(
1999
).
22.
L. D.
Landau
and
E. M.
Lifshitz
,
Quantum Mechanics. Non-Relativistic Theory
(
Pergamon Press
,
1977
).
23.
H.
Tennekes
,
Book: Handbook of Turbulence
, edited by
W.
Frost
and
T. H.
Moulden
(
Plenum Press
,
1977
).
24.
P. G.
Saffman
,
Vortex Dynamics
(
Cambrige University Press
,
1992
).
25.
C. F.
Barenghi
, “
Tangled vortex lines: Dynamics, geometry and topology of quantum turbulence
,” in
Knotted Fields
, edited by
R. L.
Ricca
and
X.
Liu
(
Springer
,
2022
).
You do not currently have access to this content.