Understanding the interactions between hydrogen flame and turbulent vortices is important for developing the next-generation carbon neutral combustion systems. In the present work, we perform several direct numerical simulation cases to study the dynamics of a hydrogen diffusion flame embedded in the Taylor–Green Vortex (TGV). The evolution of flame and vortex is investigated for a range of initial Reynolds numbers up to 3200 with different mass diffusion models. We show that the vortices dissipate rapidly in cases at low Reynolds numbers, while the consistent stretching, splitting, and twisting of vortex tubes are observed in cases with evident turbulence transition at high Reynolds numbers. Regarding the interactions between the flame and vortex, it is demonstrated that the heat release generated by the flame has suppression effects on the turbulence intensity and its development of the TGV. Meanwhile, the intense turbulence provides abundant kinetic energy, accelerating the mixing of the diffusion flame with a contribution to a higher strain rate and larger curvatures of the flame. Considering the effects of the non-unity-Lewis number, it is revealed that the flame strength is more intense in the cases with the mixture-averaged model. However, this effect is relatively suppressed under the impacts of the intense turbulence.

1.
P.-H.
Renard
,
D.
Thévenin
,
J.
Rolon
, and
S.
Candel
, “
Dynamics of flame/vortex interactions
,”
Prog. Energy Combust. Sci.
26
(
3
),
225
282
(
2000
).
2.
B.
Cuenot
and
T.
Poinsot
, “
Effects of curvature and unsteadiness in diffusion flames. Implications for turbulent diffusion combustion
,”
Symp. (Int.) Combust.
25
(
1
),
1383
1390
(
1994
).
3.
A.
Kazbekov
,
K.
Kumashiro
, and
A. M.
Steinberg
, “
Enstrophy transport in swirl combustion
,”
J. Fluid Mech.
876
,
715
732
(
2019
).
4.
A. J.
Fillo
,
P. E.
Hamlington
, and
K. E.
Niemeyer
, “
Assessing diffusion model impacts on enstrophy and flame structure in turbulent lean premixed flames
,”
Combust. Theory Modell.
26
,
712
(
2022
).
5.
T.
Poinsot
,
D.
Veynante
, and
S.
Candel
, “
Quenching processes and premixed turbulent combustion diagrams
,”
J. Fluid Mech. Digital Arch.
228
,
561
(
1991
).
6.
W.
Roberts
,
J.
Driscoll
,
M.
Drake
, and
L.
Goss
, “
Images of the quenching of a flame by a vortex—To quantify regimes of turbulent combustion
,”
Combust. Flame
94
(
1–2
),
58
69
(
1993
).
7.
M.
Hermanns
,
M.
Vera
, and
A.
Liñán
, “
On the dynamics of flame edges in diffusion-flame/vortex interactions
,”
Combust. Flame
149
(
1–2
),
32
48
(
2007
).
8.
P.
Agostinelli
,
D.
Laera
,
I.
Chterev
,
I.
Boxx
,
L.
Gicquel
, and
T.
Poinsot
, “
On the impact of H2-enrichment on flame structure and combustion dynamics of a lean partially-premixed turbulent swirling flame
,”
Combust. Flame
241
,
112120
(
2022
).
9.
A.
Aniello
,
D.
Laera
,
S.
Marragou
,
H.
Magnes
,
L.
Selle
,
T.
Schuller
, and
T.
Poinsot
, “
Experimental and numerical investigation of two flame stabilization regimes observed in a dual swirl H2-air coaxial injector
,”
Combust. Flame
249
,
112595
(
2023
).
10.
T.
Poinsot
and
D.
Veynante
,
Theoretical and Numerical Combustion
(
RT Edwards, Inc
.,
2005
).
11.
P.
Domingo
and
L.
Vervisch
, “
Recent developments in DNS of turbulent combustion
,”
Proc. Combust. Inst.
39,
22
(
2022
).
12.
G. I.
Taylor
and
A. E.
Green
, “
Mechanism of the production of small eddies from large ones
,”
Proc. R. Soc. London, Ser. A
158
(
895
),
499
521
(
1937
).
13.
Z.
Wang
,
K.
Fidkowski
,
R.
Abgrall
,
F.
Bassi
,
D.
Caraeni
,
A.
Cary
,
H.
Deconinck
,
R.
Hartmann
,
K.
Hillewaert
,
H.
Huynh
,
N.
Kroll
,
G.
May
,
P.-O.
Persson
,
B.
van Leer
, and
M.
Visbal
, “
High-order CFD methods: Current status and perspective
,”
Int. J. Numer. Methods Fluids
72
(
8
),
811
845
(
2013
).
14.
N.
Sharma
and
T. K.
Sengupta
, “
Vorticity dynamics of the three-dimensional Taylor–Green vortex problem
,”
Phys. Fluids
31
(
3
),
035106
(
2019
).
15.
M. E.
Brachet
,
D.
Meiron
,
S.
Orszag
,
B.
Nickel
,
R.
Morf
, and
U.
Frisch
, “
The Taylor–Green vortex and fully developed turbulence
,”
J. Stat. Phys.
34
(
5–6
),
1049
1063
(
1984
).
16.
D. J.
Lusher
and
N. D.
Sandham
, “
Assessment of low-dissipative shock-capturing schemes for the compressible Taylor–Green vortex
,”
AIAA J.
59
(
2
),
533
545
(
2021
).
17.
N.
Peng
and
Y.
Yang
, “
Effects of the Mach number on the evolution of vortex-surface fields in compressible Taylor–Green flows
,”
Phys. Rev. Fluids
3
(
1
),
013401
(
2018
).
18.
Y.
Yang
and
D. I.
Pullin
, “
Evolution of vortex-surface fields in viscous Taylor–Green and Kida–Pelz flows
,”
J. Fluid Mech.
685
,
146
164
(
2011
).
19.
H.
Zhou
,
J.
You
,
S.
Xiong
,
Y.
Yang
,
D.
Thévenin
, and
S.
Chen
, “
Interactions between the premixed flame front and the three-dimensional Taylor–Green vortex
,”
Proc. Combust. Inst.
37
(
2
),
2461
2468
(
2019
).
20.
A.
Abdelsamie
,
G.
Lartigue
,
C. E.
Frouzakis
, and
D.
Thévenin
, “
The Taylor–Green vortex as a benchmark for high-fidelity combustion simulations using low-Mach solvers
,”
Comput. Fluids
223
,
104935
(
2021
).
21.
R.
Mao
,
M.
Lin
,
Y.
Zhang
,
T.
Zhang
,
Z.-Q. J.
Xu
, and
Z. X.
Chen
, “
DeepFlame: A deep learning empowered open-source platform for reacting flow simulations
,” arXiv:2210.07094 (
2022
).
22.
P.
Boivin
,
M.
Tayyab
, and
S.
Zhao
, “
Benchmarking a lattice-Boltzmann solver for reactive flows: Is the method worth the effort for combustion?
,”
Phys. Fluids
33
,
071703
(
2021
).
23.
I.
Morev
,
B.
Tekgül
,
M.
Gadalla
,
A.
Shahanaghi
,
J.
Kannan
,
S.
Karimkashi
,
O.
Kaario
, and
V.
Vuorinen
, “
Fast reactive flow simulations using analytical Jacobian and dynamic load balancing in OpenFOAM
,”
Phys. Fluids
34
(
2
),
021801
(
2022
).
24.
B.
Cuenot
and
T.
Poinsot
, “
Asymptotic and numerical study of diffusion flames with variable Lewis number and finite rate chemistry
,”
Combust. Flame
104
,
111
(
1996
).
25.
W.
Han
,
A.
Scholtissek
,
F.
Dietzsch
, and
C.
Hasse
, “
Thermal and chemical effects of differential diffusion in turbulent non-premixed H2 flames
,”
Proc. Combust. Inst.
38
(
2
),
2627
2634
(
2021
).
26.
T.
Poinsot
,
S.
Candelt
, and
A.
Trouvt
, “
Applications of direct numerical simulation to premixed turbulent combustion
,”
Prog. Energy Combust. Sci.
21
,
531
(
1995
).
27.
T.
Zhang
,
Y.
Yi
,
Y.
Xu
,
Z. X.
Chen
,
Y.
Zhang
,
W.
E
, and
Z.-Q. J.
Xu
, “
A multi-scale sampling method for accurate and robust deep neural network to predict combustion chemical kinetics
,”
Combust. Flame
245
,
112319
(
2022
).
28.
J.
Fang
,
F.
Gao
,
C.
Moulinec
, and
D.
Emerson
, “
An improved parallel compact scheme for domain-decoupled simulation of turbulence
,”
Int. J. Numer. Methods Fluids
90
(
10
),
479
500
(
2019
).
29.
J.
Fang
,
Z.
Li
, and
L.
Lu
, “
An optimized low-dissipation monotonicity-preserving scheme for numerical simulations of high-speed turbulent flows
,”
J. Sci. Comput.
56
(
1
),
67
95
(
2013
).
30.
J.
Fang
,
A. A.
Zheltovodov
,
Y.
Yao
,
C.
Moulinec
, and
D. R.
Emerson
, “
On the turbulence amplification in shock-wave/turbulent boundary layer interaction
,”
J. Fluid Mech.
897
,
A32
(
2020
).
31.
J.
Fang
,
X.
Deng
, and
Z. X.
Chen
, “
Direct numerical simulation of supersonic internal flow in a model scramjet combustor under a non-reactive condition
,”
Phys. Fluids
35
(
2
),
026103
(
2023
).
32.
P.
Boivin
,
C.
Jiménez
,
A.
Sánchez
, and
F.
Williams
, “
An explicit reduced mechanism for H2–air combustion
,”
Proc. Combust. Inst.
33
(
1
),
517
523
(
2011
).
33.
R. J.
Kee
,
M. E.
Coltrin
,
P.
Glarborg
, and
H.
Zhu
,
Chemically Reacting Flow: Theory, Modeling, and Simulation
(
Wiley
,
2017
).
You do not currently have access to this content.