Storm sewer systems may experience storm geysers, raising concerns about public safety. A thorough understanding of the influential factors of the geysers is essential yet insufficiently investigated in the literature. A transient three-dimensional (3D) computational fluid dynamics model incorporating the volume of fluid method is used to investigate the geyser formation mechanism and hydrodynamics. An air pocket in a pressurized pipe travels with water past a vertical shaft, producing an air-releasing geyser and, subsequently, a rapid-filling geyser. If the air pocket in the pipe is too small or if it moves too quickly, a hybrid geyser might be set off when the air-releasing and rapid-filling geysers overlap. A hybrid geyser has unique properties since it combines an air-releasing geyser and a rapid-filling geyser. The presence of hybrid geysers lowers the height of air-releasing and rapid-filling geysers. Equations are proposed for predicting the heights of the geysers with errors of about 15%. The height of the air-releasing geyser increases with the water level in the shaft. As the pressure difference between the two ends of the pipe reduces, the height of the rapid-filling geyser increases. The vertical shaft diameter has little influence on rapid-filling geysers, while a small diameter often results in high air-releasing geysers. The effect on the height of both kinds of geysers is negligible when the air pocket volume is large enough. The findings can be used for designing storm geyser mitigation measures.

1.
Asimow
,
N.
,
What Caused Chicago's Urban Geysers during Sunday's Storm? Experts Explain the Rare Phenomenon
(
Block Club Chicago
,
Chicago
,
2022
).
2.
Bashiri-Atrabi
,
H.
,
Hosoda
,
T.
, and
Shirai
,
H.
, “
Propagation of an air-water interface from pressurized to free-surface flow in a circular pipe
,”
J. Hydraul. Eng.
142
,
04016055
(
2016
).
3.
Benjamin
,
T. B.
, “
Gravity currents and related phenomena
,”
J. Fluid Mech.
31
,
209
(
1968
).
4.
Chan
,
S. N.
,
Cong
,
J.
, and
Lee
,
J. H. W.
, “
3D numerical modeling of geyser formation by release of entrapped air from horizontal pipe into vertical shaft
,”
J. Hydraul. Eng.
144
,
04017071
(
2018
).
5.
Chegini
,
T.
and
Leon
,
A. S.
, “
Comparison of Various Turbulence Models for Violent Geysers in Vertical Pipes
,” in
World Environmental and Water Resources Congress 2018: Hydraulics and Waterways, Water Distribution Systems Analysis, and Smart Water
, edited by
Kamojjala,
S
. (
World Environmental and Water Resources Congress
,
2018
), pp.
99
108
.
6.
Chegini
,
T.
and
Leon
,
A. S.
, “
Numerical investigation of field-scale geysers in a vertical shaft
,”
J. Hydraul. Res.
58
,
503
(
2019
).
7.
Chen
,
S.
,
Yang
,
Q.
,
Li
,
W.
,
Song
,
S.
,
Qi
,
X.
,
Duan
,
X.
,
Shi
,
B.
,
Li
,
X.
, and
Gong
,
J.
, “
Application of gas phase tracking approach in hydrodynamic simulation for gas–liquid two-phase flow in undulant pipelines
,”
Phys. Fluids
33
,
093107
(
2021
).
8.
Cong
,
J.
,
Chan
,
S. N.
, and
Lee
,
J. H. W.
, “
Geyser formation by release of entrapped air from horizontal pipe into vertical shaft
,”
J. Hydraul. Eng.
143
,
04017039
(
2017
).
9.
Fang
,
H.
,
Zhou
,
L.
,
Cao
,
Y.
,
Cai
,
F.
, and
Liu
,
D.
, “
3D CFD simulations of air-water interaction in T-junction pipes of urban stormwater drainage system
,”
Urban Water J.
19
,
74
(
2022
).
10.
Guo
,
Q.
and
Song
,
C. C. S.
, “
Dropshaft hydrodynamics under transient conditions
,”
J. Hydraul. Eng.
117
,
1042
(
1991
).
11.
Hager
,
W. H.
,
Wastewater Hydraulics: Theory and Practice
(
Springer Science and Business Media
,
2010
).
12.
Hirt
,
C. W.
and
Nichols
,
B. D.
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
(
1981
).
13.
Huang
,
B.
,
Wu
,
S.
,
Zhu
,
D. Z.
, and
Schulz
,
H. E.
, “
Experimental study of geysers through a vent pipe connected to flowing sewers
,”
Water Sci. Technol.
2017
,
66
.
14.
Leon
,
A. S.
, “
Mechanisms that lead to violent geysers in vertical shafts
,”
J. Hydraul. Res.
57
,
295
(
2018
).
15.
Leon
,
A. S.
,
Elayeb
,
I. S.
, and
Tang
,
Y.
, “
An experimental study on violent geysers in vertical pipes
,”
J. Hydraul. Res.
57
,
283
(
2018
).
16.
Lewis
,
J. W.
, “
A physical investigation of air/water interactions leading to geyser events in rapid filling pipelines
,” Ph.D. thesis (
University of Michigan
,
2011
).
17.
Li
,
J.
and
McCorquodale
,
A.
, “
Modeling mixed flow in storm sewers
,”
J. Hydraul. Eng.
125
,
1170
(
1999
).
18.
Li
,
L.
,
Zhu
,
D. Z.
, and
Huang
,
B.
, “
Analysis of pressure transient following rapid filling of a vented horizontal pipe
,”
Water
10
,
1698
(
2018
).
19.
Liu
,
J.
,
Qian
,
Y.
,
Zhu
,
D. Z.
,
Zhang
,
J.
,
Edwini-Bonsu
,
S.
, and
Zhou
,
F.
, “
Numerical study on the mechanisms of storm geyser in a vertical riser-chamber system
,”
J. Hydraul. Res.
60
,
341
356
(
2022
).
20.
Liu
,
L.
,
Shao
,
W.
, and
Zhu
,
D. Z.
, “
Experimental study on stormwater geyser in vertical shaft above junction chamber
,”
J. Hydraul. Eng.
146
,
04019055
(
2020
).
21.
Molina
,
J.
and
Ortiz
,
P.
, “
A continuous finite element solution of fluid interface propagation for emergence of cavities and geysering
,”
Comput. Methods Appl. Mech. Eng.
359
,
112746
(
2019
).
22.
Molina
,
J.
and
Ortiz
,
P.
, “
Propagation of large air pockets in ducts. Analytical and numerical approaches
,”
Appl. Math. Modell.
110
,
633
(
2022
).
23.
Muller
,
K. Z.
,
Wang
,
J.
, and
Vasconcelos
,
J. G.
, “
Water displacement in shafts and geysering created by uncontrolled air pocket releases
,”
J. Hydraul. Eng.
143
,
04017043
(
2017
).
24.
Pozos-Estrada
,
O.
,
Pothof
,
I.
,
Fuentes-Mariles
,
O. A.
,
Dominguez-Mora
,
R.
,
Pedrozo-Acuña
,
A.
,
Meli
,
R.
, and
Peña
,
F.
, “
Failure of a drainage tunnel caused by an entrapped air pocket
,”
Urban Water J.
12
,
446
(
2015
).
25.
Qian
,
Y.
,
Zhu
,
D. Z.
,
Liu
,
L.
,
Shao
,
W.
,
Edwini-Bonsu
,
S.
, and
Zhou
,
F.
, “
Numerical and experimental study on mitigation of storm geysers in Edmonton, Alberta, Canada
,”
J. Hydraul. Eng.
146
,
04019069
(
2020
).
26.
Schulz
,
H. E.
,
Vasconcelos
,
J. G.
, and
Patrick
,
A. C.
, “
Air entrainment in pipe-filling bores and pressurization interfaces
,”
J. Hydraul. Eng.
146
,
04019053
(
2020
).
27.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
, “
A new k-ϵ eddy viscosity model for high Reynolds number turbulent flows
,”
Comput. Fluids
24
,
227
(
1995
).
28.
Vasconcelos
,
J. G.
and
Wright
,
S. J.
, “
Experimental investigation of surges in a stormwater storage tunnel
,”
J. Hydraul. Eng.
131
,
853
(
2005
).
29.
Vasconcelos
,
J. G.
and
Wright
,
S. J.
, “
Mechanisms for Air Pocket Entrapment in Stormwater Storage Tunnels
,” in
World Environmental and Water Resource Congress 2006: Examining the Confluence of Environmental and Water Concerns
(
World Environmental and Water Resources Congress
,
2006
), pp.
1
10
.
30.
Vasconcelos
,
J. G.
and
Wright
,
S. J.
, “
Geysering generated by large air pockets released through water-filled ventilation shafts
,”
J. Hydraul. Eng.
137
,
543
(
2011
).
31.
Wallis
,
G. B.
,
One-Dimensional Two-Phase Flow
(
Courier Dover Publications
,
2020
).
32.
Wang
,
J.
and
Vasconcelos
,
J. G.
, “
Investigation of manhole cover displacement during rapid filling of stormwater systems
,”
J. Hydraul. Eng.
146
,
04020022
(
2020
).
33.
Wang
,
X.
, “
The study on the geysers induced by the release of trapped air in a storage tunnel system (in Chinese)
,” Ph.D.
thesis (Shanghai University
,
2020
).
34.
Wright
,
S. J.
, “
Influence of air pocket volume on manhole surge
,”
J. Water Manage. Model.
21
,
141
(
2013
).
35.
Wright
,
S. J.
,
Lewis
,
J. W.
, and
Vasconcelos
,
J. G.
, “
Geysering in rapidly filling storm-water tunnels
,”
J. Hydraul. Eng.
137
,
112
(
2011a
).
36.
Wright
,
S. J.
,
Lewis
,
J. W.
, and
Vasconcelos
,
J. G.
, “
Physical processes resulting in geysers in rapidly filling storm-water tunnels
,”
J. Irrig. Drain. Eng.
137
,
199
(
2011b
).
37.
Zhang
,
Y.
,
Chen
,
Y.
,
Qian
,
S.
,
Xu
,
H.
,
Feng
,
J.
, and
Wang
,
X.
, “
Experimental study on geysers in covered manholes during release of air pockets in stormwater systems
,”
J. Hydraul. Eng.
148
,
06022003
(
2022
).
38.
Zhou
,
F.
,
Hicks
,
F. E.
, and
Steffler
,
P. M.
, “
Transient flow in a rapidly filling horizontal pipe containing trapped air
,”
J. Hydraul. Eng.
128
,
625
(
2002
).
39.
Zhou
,
G.
and
Prosperetti
,
A.
, “
Faster Taylor bubbles
,”
J. Fluid Mech.
920
,
R2
(
2021
).
You do not currently have access to this content.