Shock wave/turbulent boundary layer interactions are widely observed in supersonic flows with many adverse effects on the flow field, resulting in increasing investigation on their control. This paper optimizes the secondary recirculation configuration based on our previous investigations. Six secondary recirculation configurations are designed, and the adaptive control schemes for these configurations are developed for incoming Mach numbers equaling 2.5, 3.0, and 3.5. The three-dimensional implicit Reynolds-Averaged Navier–Stokes equations employing the two-equation shear stress transport k–ω turbulence model are used to perform simulation calculations for each case. An evaluation approach is developed for the control performance and utilized to perform quantitative calculations. The calculation results are used to analyze the control effects of the separation zone volume, total pressure recovery coefficient, and peak wall heat flux for different configurations to find the best control configuration with the widest operating Mach number range. Finally, a configuration with a grid pattern distribution of suction holes, each with a length and width of 2.828 mm uniformly distributed over 52 < x/D < 124 and −12 < z/D < 12, is obtained for the shock wave/turbulence boundary layer control studied in this study.

1.
W.
Huang
,
H.
Wu
,
Y. G.
Yang
,
L.
Yan
, and
S. B.
Li
, “
Recent advances in the shock wave/boundary layer interaction and its control in internal and external flows
,”
Acta Astronaut.
174
,
103
122
(
2020
).
2.
A.
Gross
,
J.
Little
, and
H. F.
Fasel
, “
Numerical investigation of unswept and swept turbulent shock-wave boundary layer interactions
,”
Aerosp. Sci. Technol.
123
,
107455
(
2022
).
3.
A.
Hadjadj
and
J. P.
Dussauge
, “
Shock wave boundary layer interaction
,”
Shock Waves
19
(
6
),
449
452
(
2009
).
4.
W.
Huang
,
Z. B.
Du
,
L.
Yan
et al, “
Supersonic mixing in airbreathing propulsion systems for hypersonic flights
,”
Prog. Aerosp. Sci.
109
,
100545
(
2019
).
5.
D.
Knight
and
M.
Mortazavi
, “
Hypersonic shock wave transitional boundary layer interactions—A review
,”
Acta Astronaut.
151
,
296
317
(
2018
).
6.
K.
Zhu
,
L. X.
Jiang
,
W. D.
Liu
et al, “
Wall temperature effects on shock wave/turbulent boundary layer interaction via direct numerical simulation
,”
Acta Astronaut.
178
,
499
510
(
2021
).
7.
B. H.
Zhang
,
Y. X.
Zhao
, and
J.
Liu
, “
Effects of bleed hole size on supersonic boundary layer bleed mass flow rate
,”
J. Zhejiang Univ. Sci. A
21
(
8
),
652
662
(
2020
).
8.
M. R.
Seyed
and
S. Y.
Javad
, “
Effects of bleed type on the performance of a supersonic intake
,”
Exp. Therm. Fluid Sci.
132
,
110568
(
2022
).
9.
E.
Schülein
,
C.
Schnepf
, and
S.
WeisS
, “
Concave bump for impinging-shock control in supersonic flows
,”
AIAA J.
60
(
60(5
),
2749
2766
(
2022
).
10.
P.
Bruce
and
S. P.
Colliss
, “
Review of research into shock control bumps
,”
Shock Waves
25
(
5
),
451
471
(
2015
).
11.
Y.
Zhang
,
H. J.
Tan
,
J. F.
Li
, and
N.
Yin
, “
Control of cowl-shock/boundary-layer interactions by deformable shape-memory alloy bump
,”
AIAA J.
57
(
2
),
696
705
(
2019
).
12.
R. R.
Martis
,
A.
Misra
, and
A.
Singh
, “
Effect of microramps on separated swept shock wave—Boundary-layer interactions
,”
AIAA J.
52
(
3
),
591
603
(
2014
).
13.
R. H. M.
Giepman
,
F. F. J.
Schrijer
, and
B. W. V.
Oudheusden
, “
Flow control of an oblique shock wave reflection with micro-ramp vortex generators: Effects of location and size
,”
Phys. Fluids
26
(
6
),
066101
(
2014
).
14.
T.
Nilavarasan
and
G. N.
Joshi
, “
Effect of microramps on flare-induced shock – boundary-layer interaction
,”
Aeronaut. j.
124
(
1271
),
121
149
(
2020
).
15.
H.
Wu
,
W.
Huang
,
X. Y.
Zhong
, and
Z. B.
Du
, “
Study of the streamwise location of a micro vortex generator for a separation-control mechanism in supersonic flow
,”
Phys. Fluids
34
(
11
),
116115
(
2022
).
16.
H.
Bagheri
,
S. A. A.
Mirjalily
,
S. A. A.
Oloomi
et al, “
Effects of micro-vortex generators on shock wave structure in a low aspect ratio duct, numerical investigation
,”
Acta Astronaut.
178
,
616
624
(
2021
).
17.
V.
Pasquariello
,
M.
Grilli
,
S.
Hickel
, and
N. A.
Adams
, “
Large-eddy simulation of passive shockwave/boundary-layer interaction control
,”
Int. J. Heat Fluid Flow
49
,
116
127
(
2014
).
18.
L.
Yan
,
H.
Wu
,
W.
Huang
et al, “
Shock wave/turbulence boundary layer interaction control with the secondary recirculation jet in a supersonic flow
,”
Acta Astronaut.
173
,
131
138
(
2020
).
19.
Z. B.
Du
,
C. B.
Shen
,
Y.
Shen
et al, “
Design exploration on the shock wave/turbulence boundary layer control induced by the secondary recirculation jet
,”
Acta Astronaut.
181
,
468
481
(
2021
).
20.
Z. B.
Du
,
C. B.
Shen
,
W.
Huang
et al, “
Investigation on the three-dimensional shock wave/turbulence boundary layer control induced by the secondary recirculation jets
,”
Comput. Fluids
237
,
105341
(
2022
).
21.
H.
Wu
,
W.
Huang
,
L.
Yan
, and
Z. B.
Du
, “
Control mechanism of micro vortex generator and secondary recirculation jet combination in the shock wave/boundary layer interaction
,”
Acta Astronaut.
200
,
56
76
(
2022
).
22.
X. Y.
Zhong
,
W.
Huang
,
L.
Yan
et al, “
Investigation on the adaptive control of shock wave/turbulent boundary layer interaction based on the secondary recirculation jets
,”
Acta Astronaut.
198
,
233
250
(
2022
).
23.
W. X.
Deng
,
S. H.
Yang
,
W. Z.
Zhang
et al, “
Study on air blowing control method for hypersonic flow
,”
J. Propul. Technol.
38
(
4
),
759
763
(
2017
).
24.
J. M. F.
Peter
and
M. J.
Kloker
, “
Direct numerical simulation of supersonic turbulent flow with film cooling by wall-parallel blowing
,”
Phys. Fluids
34
(
2
),
025125
(
2022
).
25.
R.
Sriram
and
G.
Jagadeesh
, “
Shock tunnel experiments on control of shock induced large separation bubble using boundary layer bleed
,”
Aerosp. Sci. Technol.
36
,
87
93
(
2014
).
26.
V.
Sharma
,
V.
Eswaran
, and
D.
Chakraborty
, “
Determination of optimal spacing between transverse jets in a SCRAMJET engine
,”
Aerosp. Sci. Technol.
96
,
105520
(
2020
).
27.
S. B.
Verma
and
C.
Manisankar
, “
Control of compression-ramp-induced interaction with steady microjets
,”
AIAA J.
57
(
7
),
2892
2904
(
2019
).
28.
Z. B.
Du
,
C. B.
Shen
,
W.
Huang
,
B.
Fan
, and
Y.
Han
, “
Control mechanism of the three-dimensional shock wave/boundary layer interaction with the steady and pulsed micro-jets in a supersonic crossflow
,”
Phys. Fluids
34
(
8
),
086109
(
2022
).
29.
Y. M.
Liu
,
H.
Zhang
, and
P. C.
Liu
, “
Flow control in supersonic flow field based on micro jets
,”
Adv. Mech. Eng.
11
(
1
),
168781401882152
(
2019
).
30.
Z. B.
Du
,
C. B.
Shen
,
W.
Huang
, and
X. Y.
Zhong
, “
Mixing augmentation induced by the combination of the oblique shock wave and secondary recirculation jet in a supersonic crossflow
,”
Int. J. Hydrogen Energy
47
(
11
),
7458
7477
(
2022
).
31.
C.
Kalra
,
S.
Zaidi
, and
R.
Miles
, “
Shockwave induced turbulent boundary layer separation control with plasma actuators
,” in
46th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, Nevada
,
2008
.
32.
S.
Saito
,
K.
Udagawa
,
K.
Kawaguchi
et al, “
Boundary layer separation control by MHD interaction
,” in
46th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, Nevada
,
2008
.
33.
H.
Jiang
,
J.
Liu
,
S. C.
Luo
,
J. Y.
Wang
, and
W.
Huang
, “
Hypersonic flow control of shock wave/turbulent boundary layer interactions using magnetohydrodynamic plasma actuators
,”
J. Zhejiang Univ. Sci. A
21
(
9
),
745
760
(
2020
).
34.
Z.
Zhao
,
J. M.
Li
,
J.
Zheng
et al, “
Study of shock and induced flow dynamics by nanosecond dielectric-barrier-discharge plasma actuators
,”
AIAA J.
53
(
5
),
1336
1348
(
2015
).
35.
H. S.
Yang
,
H. H.
Zong
,
H.
Liang
,
Y.
Wu
,
C. B.
Zhang
,
Y. K.
Kong
, and
Y. H.
Li
, “
Swept shock wave/boundary layer interaction control based on surface arc plasma
,”
Phys. Fluids
34
(
8
),
087119
(
2022
).
36.
N.
Benard
and
E.
Moreau
, “
Role of the electric waveform supplying a dielectric barrier discharge plasma actuator
,”
Appl. Phys. Lett.
100
(
19
),
193503
193529
(
2012
).
37.
X. G.
Ma
,
J.
Fan
,
Y. K.
Wu
,
X. W.
Liu
, and
R.
Xue
, “
Study on the mechanism of shock wave and boundary layter interaction control using high-frequency pulsed arc discharge plasma
,”
Phys. Fluids
34
(
8
),
086102
(
2022
).
38.
L. M.
Feng
,
H. Y.
Wang
,
Z.
Chen
et al, “
Unsteadiness characterization of shock wave/turbulent boundary layer interaction controlled by high-frequency arc plasma energy deposition
,”
Phys. Fluids
33
(
1
),
015114
(
2021
).
39.
W. X.
Li
,
D.
Zhao
,
X.
Chen
,
Y. Z.
Sun
,
S. L.
Ni
,
D.
Guan
, and
B.
Wang
, “
Numerical investigations on solid-fueled ramjet inlet thermodynamic properties effects on generating self-sustained combustion instability
,”
Aerosp. Sci. Technol.
119
,
107097
(
2021
).
40.
L. Q.
Li
,
W.
Huang
, and
L.
Yan
, “
Mixing augmentation induced by a vortex generator located upstream of the transverse gaseous jet in supersonic flows
,”
Aerosp. Sci. Technol.
68
,
77
89
(
2017
).
41.
Y. L.
Zhang
,
M. B.
Gerdroodbary
,
S.
Hosseini
et al, “
Effect of hybrid coaxial air and hydrogen jets on fuel mixing at supersonic crossflow
,”
Int. J. Hydrogen Energy
46
(
29
),
16048
16062
(
2021
).
42.
W.
Huang
,
Z. B.
Du
,
L.
Yan
, and
R.
Moradi
, “
Flame propagation and stabilization in dual-mode scramjet combustors: A survey
,”
Prog. Aerosp. Sci.
101
,
13
30
(
2018
).
43.
M. B.
Gerdroodbary
,
R.
Moradi
, and
H.
Babazadeh
, “
Computational investigation of multi hydrogen jets at inclined supersonic flow
,”
Int. J. Energy Res.
45
(
2
),
1661
1672
(
2021
).
44.
Fluent Inc.
,
Fluent 16.1 User's Guide
(
Fluent Inc
,
Lebanon
,
NH
,
2006
).
45.
W.
Huang
,
W. D.
Liu
,
S. B.
Li
,
Z. X.
Xia
,
J.
Liu
, and
Z. G.
Wang
, “
Influences of the turbulence model and the slot width on the transverse slot injection flow field in supersonic flows
,”
Acta Astronaut
73
,
1
9
(
2012
).
46.
X. L.
Liu
,
M. B.
Gerdroodbary
,
M.
Sheikholeslami
et al, “
Effect of strut angle on performance of hydrogen multi-jets inside the cavity at combustor chamber
,”
Int. J. Hydrogen Energy
45
(
55
),
31179
31187
(
2020
).
47.
O. R.
Kummitha
,
K. M.
Pandey
, and
A.
Padidam
, “
Effect of a revolved wedge strut induced mixing enhancement for a hydrogen fueled scramjet combustor
,”
Int. J. Hydrogen Energy
46
(
24
),
13340
13352
(
2021
).
48.
W.
Huang
,
Z.
Chen
,
L.
Yan
,
B.-B.
Yan
, and
Z.-B.
Du
, “
Drag and heat flux reduction mechanism induced by the spike and its combinations in supersonic flows: A review
,”
Prog. Aerosp. Sci.
105
,
31
39
(
2019
).
49.
O. R.
Kummitha
and
K. M.
Pandey
, “
Hydrogen fueled scramjet combustor with a wavy-wall double strut fuel injector
,”
Fuel
304
,
121425
(
2021
).
50.
S. Y.
Wang
,
Z. B.
Du
,
W.
Huang
, and
G.
Choubey
, “
Numerical study on a novel device for hydrogen mixing enhancement in a scramjet engine: Coaxial injector
,”
Aerosp. Sci. Technol.
127
,
107680
(
2022
).
51.
Y.
Jiang
,
M.
Hajivand
,
H.
Sadeghi
et al, “
Influence of trapezoidal lobe strut on fuel mixing and combustion in supersonic combustion chamber
,”
Aerosp. Sci. Technol.
116
(
2
),
106841
(
2021
).
52.
W.
Huang
,
Y.
Li
,
L.
Yan
, and
R.
Moradi
, “
Mixing enhancement mechanism induced by the cascaded fuel injectors in supersonic flows: A numerical study
,”
Acta Astronaut.
152
,
18
26
(
2018
).
53.
K.
Hayashi
,
S.
Aso
, and
Y.
Tani
, “
Experimental study on thermal protection system by opposing jet in supersonic flow
,”
J. Spacecr. Rockets
43
(
1
),
233
236
(
2006
).
54.
W. X.
Li
,
D.
Zhao
,
L. Q.
Zhang
, and
X.
Chen
, “
Proper orthogonal and dynamic mode decomposition analyses of nonlinear combustion instabilites in a solid-fuel ramjet combustor
,”
Therm. Sci. Eng. Prog.
27
,
101147
(
2022
).
55.
J.
Lighthill
, “
On boundary-layer upstream influence. II. Supersonic flows without separation
,”
Proc. R. Soc. London, Ser. A
217
,
478
507
(
1953
).
56.
C. P.
Wang
,
P.
Xu
,
L. S.
Xue
, and
Y.
Jiao
, “
Three-dimensional reconstruction of incident shock/boundary layer interaction using background-oriented schlieren
,”
Acta Astronaut.
157
,
341
349
(
2019
).
You do not currently have access to this content.