The mixing characteristics of hydrogen and air are vital to combustion performance. Excellent hydrogeni–air mixing is required to avoid hot spots in the reactivity of hydrogen in a combustion chamber. The present study aims to explore a mixing enhancement mechanism for a hydrogen transverse jet in which a rib is added in front of the jet. A schlieren technique is used to visualize the flow field of the improved hydrogen jet, and the combustion performance of the improved flame stabilizer is studied. The results show that the penetration depth and mixing performance of the hydrogen jet are improved. At its outset, the hydrogen jet flows like a free jet downstream of the rib. The flow pattern of the hydrogen jet is then changed by the shear layer between the low-velocity region and the mainstream. Ideal mixing performance is ultimately achieved under the strong effect of the mainstream. Combustion experiments show that the mixing and combustion performance are greatly improved by the rib in front of the jet. This study provides an important theoretical basis for the design of gaseous fuel combustors.

1.
D.
Cecere
,
E.
Giacomazzi
, and
A.
Ingenito
, “
A review on hydrogen industrial aerospace applications
,”
Int. J. Hydrogen Energy
39
,
10731
(
2014
).
2.
U.
Jin
and
K. T.
Kim
, “
Experimental investigation of combustion dynamics and NOx/CO emissions from densely distributed lean-premixed multinozzle CH4/C3H8/H2/air flames
,”
Combust. Flame
229
,
111410
(
2021
).
3.
F. H.
Vance
,
A.
Scholtissek
,
P.
de Goey
,
J.
van Oijen
, and
C.
Hasse
, “
Dynamic stabilization of a hydrogen premixed flame in a narrow channel
,”
Combust. Flame
248
,
112560
(
2023
).
4.
D.
Verstraete
, “
Long range transport aircraft using hydrogen fuel
,”
Int. J. Hydrogen Energy
38
,
14824
(
2013
).
5.
B.
Khandelwal
,
A.
Karakurt
,
P. R.
Sekaran
,
V.
Sethi
, and
R.
Singh
, “
Hydrogen powered aircraft: The future of air transport
,”
Prog. Aerosp. Sci.
60
,
45
(
2013
).
6.
A.
Boretti
, “
Hydrogen internal combustion engines to 2030
,”
Int. J. Hydrogen Energy
45
,
23692
(
2020
).
7.
A.
Kalbhor
,
S.
Chaudhuri
, and
L.
Chitilappilly
, “
Autoignition of hydrogen in shear flows
,”
Phys. Fluids
30
,
057106
(
2018
).
8.
H.
Zheng
,
Q.
Meng
,
N.
Zhao
,
Z.
Li
, and
F.
Deng
, “
Numerical investigation on H2/air non-premixed rotating detonation engine under different equivalence ratios
,”
Int. J. Hydrogen Energy
45
,
2289
(
2020
).
9.
S.
Li
,
W.
Qian
,
H.
Liu
,
G.
Liu
, and
M.
Zhu
, “
Autoignition and flame lift-off behavior of a fuel jet mixing with turbulent hot air coflow
,”
Proc. Combust. Inst.
38
,
6385
(
2021
).
10.
H. H. W.
Funke
,
N.
Beckmann
,
J.
Keinz
, and
A.
Horikawa
, “
30 years of dry-low-Nox micromix combustor research for hydrogen-rich fuels—An overview of past and present activities
,”
J. Eng. Gas Turbines Power
143
,
071002
(
2021
).
11.
C.
Marek
,
T.
Smith
, and
K.
Kundu
, “
Low emission hydrogen combustors for gas turbines using lean direct injection
,” AIAA Paper No. 2005-3776,
2005
.
12.
X.
Chen
,
H.
Wang
,
C.
Wang
,
X.
Wang
,
N.
Wang
, and
X.
Liu
, “
Numerical investigation into fuel–air mixing characteristics and cold flow field of single hydrogen-rich Micromix nozzle
,”
Fuel
332
,
126181
(
2023
).
13.
M.
Silva
and
A.
De Bortoli
, “
Improving the mixing of a turbulent jet diffusion flame of methane via linear quadratic regulator control
,”
Phys. Fluids
33
,
115115
(
2021
).
14.
P.
Danckwerts
, “
The definition and measurement of some characteristics of mixtures
,”
Appl. Sci. Res.
3
,
279
(
1952
).
15.
A.
Kukukova
,
J.
Aubin
, and
S. M.
Kresta
, “
A new definition of mixing and segregation: Three dimensions of a key process variable
,”
Chem. Eng. Res. Des.
87
,
633
(
2009
).
16.
L.
Zhang
and
V.
Yang
, “
Flow dynamics and mixing of a transverse jet in crossflow. I. Steady crossflow
,”
J. Eng. Gas Turbines Power
139
,
082601
(
2017
).
17.
S.
Muppidi
and
K.
Mahesh
, “
Two-dimensional model problem to explain counter-rotating vortex pair formation in a transverse jet
,”
Phys. Fluids
18
,
085103
(
2006
).
18.
D.
Yan
,
Z.
Wei
,
K.
Xie
,
C.
Guo
,
W.
Tang
, and
N.
Wang
, “
Study of the vortex structure of a subsonic jet in an axisymmetric transonic nozzle
,”
Phys. Fluids
32
,
076109
(
2020
).
19.
Z.
Li
,
Y.
Yuan
,
V.
Varsegov
,
B.
Guo
,
B.
Xiao
, and
P.
Duan
, “
Study on the mixing characteristics of circular transverse jet in crossflow
,”
Aerosp. Sci. Technol.
112
,
106599
(
2021
).
20.
Z.
Chen
,
K.
Hu
,
Y.
Mao
,
X.
Su
, and
X.
Yuan
, “
Simple integral model for trajectories of jet deflection in crossflow
,”
Phys. Fluids
33
,
111703
(
2021
).
21.
J. W.
Dayton
,
B. K.
Poettgen
,
K.
Linevitch
, Jr.
, and
B. M.
Cetegen
, “
Non-isothermal mixing characteristics in the extreme near-field of a turbulent jet in hot crossflow
,”
Phys. Fluids
31
,
125104
(
2019
).
22.
J. W.
Dayton
,
B. K.
Poettgen
, and
B. M.
Cetegen
, “
Non-isothermal mixing characteristics in the extreme near-field of turbulent jets in hot crossflow: Effects of jet exit turbulence and velocity profile
,”
Phys. Fluids
32
,
115114
(
2020
).
23.
X.
Yang
,
W.
Fan
, and
R.
Zhang
, “
Experimental investigations on aviation kerosene multi-jets in high temperature and low pressure air crossflow
,”
Fuel
324
,
124828
(
2022
).
24.
Z. P.
Tan
, “
The physics of twin-fluid jet-in-crossflow at atmospheric and jet-engine operating conditions
,”
Phys. Fluids
31
,
045106
(
2019
).
25.
T. F.
Fric
and
A.
Roshko
, “
Vortical structure in the wake of a transverse jet
,”
J. Fluid Mech.
279
,
1
(
1994
).
26.
S. H.
Smith
and
M. G.
Mungal
, “
Mixing, structure and scaling of the jet in crossflow
,”
J. Fluid Mech.
357
,
83
(
1998
).
27.
E.
Liu
,
X.
Liu
,
M.
Zhao
,
H.
Zheng
,
J.
Lu
, and
Z.
Zhang
, “
Turbulent fuel-air mixing study of jet in crossflow at different velocity ratios using LES
,”
Int. J. Heat Fluid Flow
85
,
108633
(
2020
).
28.
S.
Gopalan
,
B. M.
Abraham
, and
J.
Katz
, “
The structure of a jet in cross flow at low velocity ratios
,”
Phys. Fluids
16
,
2067
(
2004
).
29.
S.
Behera
,
B. A.
Khan
, and
A. K.
Saha
, “
Characterization of the turbulent field behavior of an elevated jet in crossflow investigated using direct numerical simulation
,”
Phys. Fluids
35
,
015157
(
2023
).
30.
G. S.
Settles
and
M. J.
Hargather
, “
A review of recent developments in schlieren and shadowgraph techniques
,”
Meas. Sci. Technol.
28
,
042001
(
2017
).
31.
M. J.
Hargather
and
G. S.
Settles
, “
A comparison of three quantitative schlieren techniques
,”
Opt. Lasers Eng.
50
,
8
(
2012
).
32.
Y.
Tian
,
M.
Guo
,
W.
Ran
,
J.
Le
, and
F.
Zhong
, “
Experimental investigation of effects of pulsed injection on flow structure and flame development in a kerosene-fueled scramjet with pilot hydrogen
,”
Phys. Fluids
34
,
055109
(
2022
).
33.
F. J.
Förster
,
N. C.
Dröske
,
M. N.
Bühler
,
J.
von Wolfersdorf
, and
B.
Weigand
, “
Analysis of flame characteristics in a scramjet combustor with staged fuel injection using common path focusing schlieren and flame visualization
,”
Combust. Flame
168
,
204
(
2016
).
34.
Q.
Zhang
,
S.
Shan
,
Z.
Zhou
,
Z.
Wang
, and
K.
Cen
, “
Jet penetration characteristics and combustion emission process of ammonia/methane fuel in a flue gas environment
,”
Phys. Fluids
34
,
093301
(
2022
).
35.
Z.
Sun
,
T.
Gan
, and
Y.
Wu
, “
Shock-wave/boundary-layer interactions at compression ramps studied by high-speed schlieren
,”
AIAA J.
58
,
1681
(
2020
).
36.
Z.
Sun
,
X.
Miao
, and
C.
Jagadeesh
, “
Experimental investigation of the transonic shock-wave/boundary-layer interaction over a shock-generation bump
,”
Phys. Fluids
32
,
106102
(
2020
).
37.
D. T.
Sandwell
, “
Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data
,”
Geophys. Res. Lett.
14
,
139
, https://doi.org/10.1029/GL014i002p00139 (
1987
).
38.
X.
Deng
and
Z.-A.
Tang
, “
Moving surface spline interpolation based on Green's function
,”
Math. Geosci.
43
,
663
(
2011
).
39.
X.
Yang
,
Z.
He
,
P.
Qiu
,
S.
Dong
, and
H.
Tan
, “
Numerical investigations on combustion and emission characteristics of a novel elliptical jet-stabilized model combustor
,”
Energy
170
,
1082
(
2019
).
40.
H.
Yilmaz
,
O.
Cam
,
S.
Tangoz
, and
I.
Yilmaz
, “
Effect of different turbulence models on combustion and emission characteristics of hydrogen/air flames
,”
Int. J. Hydrogen Energy
42
,
25744
(
2017
).
You do not currently have access to this content.