Blood backspatter pattern analysis provides important evidence in firearm-related crime scenes. The mechanisms behind particular patterns have attracted significant recent attention in forensic sciences, in general, and in forensic-science-motivated fluid dynamics, in particular. However, investigations on the secondary atomization of blood drops in flight and its effects on trajectories and the corresponding blood stain distributions were scarce. The present work is especially concerned with the effect of secondary atomization on the blood backspatter interaction with muzzle gases at short-range shooting, where it can be very significant. A secondary breakup model is incorporated into the blood backspatter model accounting for interaction with a self-similar vortex ring formed by muzzle gases and moving with high speed in the direction opposite to that of the initial motion of blood drops. The behavior of blood drops of different sizes is investigated, and different scenarios are identified. The secondary atomization stems from high relative velocities of drops and air/muzzle gases and results in the formation of small blood droplets, which are swept easier by muzzle gases and even turned around toward a target. Overall, the secondary atomization in the presence of muzzle gases results in blood stains deposited on the floor closer to the target or even behind the target. It is revealed that in the cases of short-range shooting, the predicted blood stain locations on the floor without accounting for the secondary atomization could be misleading for realistic drop sizes observed experimentally.

1.
T. A.
Brettell
,
J. M.
Butler
, and
R.
Saferstein
, “
Forensic science
,”
Anal. Chem.
77
,
3839
3860
(
2005
).
2.
P. R.
De Forest
,
Forensic Science: An Introduction to Criminalistics
(
McGraw-Hill
,
New York
,
1983
).
3.
S. H.
James
and
J. J.
Nordby
,
Forensic Science: An Introduction to Scientific and Investigative Techniques
(
CRC Press
,
Boca Raton
,
2002
).
4.
H.
Gross
,
Criminal Investigation: A Practical Handbook for Magistrates, Police Officers, and Lawyers
(
Specialist Press Limited
,
London
,
1907
).
5.
D.
Garrison
,
Practical Shooting Scene Investigation: The Investigation and Reconstruction of Crime Scenes Involving Gunfire
(
Universal Publishers
,
Irvine
,
2003
).
6.
W. J.
Chisum
and
E. T.
Brent
,
Crime Reconstruction
(
Academic Press
,
Cambridge
,
2011
).
7.
N. E.
Tsiatis
, “
Understanding distance shooting and the type of firearm from the analysis of gunshot sounds
,”
Eur. Police Sci. Res. Bull.
15
,
93
107
(
2016
), available at https://bulletin.cepol.europa.eu/index.php/bulletin/article/view/173
8.
Z. M.
Zain
,
N. J.
Siti
,
I. A. H.
Mohamed
, and
S. M. S.
Mohamed
, “
The effect of type of firearm and shooting distance on pattern distribution, particle dispersion and amount of gunshot residue
,”
Egypt. J. Forensic Sci.
11
,
10
(
2021
).
9.
J. I.
Trombka
,
J.
Schweitzer
,
C.
Selavka
,
M.
Dale
,
N.
Gahn
,
S.
Floyd
,
J.
Marie
,
M.
Hobson
,
J.
Zeosky
,
K.
Martin
, and
T.
McClannahan
, “
Crime scene investigations using portable, non-destructive space exploration technology
,”
Forensic Sci. Int.
129
,
1
9
(
2002
).
10.
S. N.
Kunz
,
H.
Brandtner
, and
H.
Meyer
, “
Unusual blood spatter patterns on the firearm and hand: A backspatter analysis to reconstruct the position and orientation of a firearm
,”
Forensic Sci. Int.
228
,
e54
e57
(
2013
).
11.
S. N.
Kunz
,
H.
Brandtner
, and
H. J.
Meyer
, “
Characteristics of backspatter on the firearm and shooting hand: An experimental analysis of close‐range gunshots
,”
J. Forensic Sci.
60
,
166
170
(
2015
).
12.
M.
Grabmüller
,
P.
Cachée
, and
C.
Courts
, “
On the effect of shooting distance, ballistic model construction, doping and weapon type on the simultaneous analysis of DNA and RNA from backspatter recovered from inside surfaces of firearms
,”
Forensic Sci. Int.: Genet. Suppl. Ser.
5
,
e644
e646
(
2015
).
13.
C.
Schyma
,
F.
Baumann
,
B.
Madea
, and
W.
Gotsmy
, “
Study of backspatter using high-speed video of experimental gunshots
,”
Forensic Sci. Med. Pathol.
17
,
36
46
(
2021
).
14.
P. M.
Comiskey
,
A. L.
Yarin
,
S.
Kim
, and
D.
Attinger
, “
Prediction of blood back spatter from a gunshot in bloodstain pattern analysis
,”
Phys. Rev. Fluids
1
,
043201
(
2016
).
15.
P. M.
Comiskey
,
A. L.
Yarin
, and
D.
Attinger
, “
Hydrodynamics of back spatter by blunt bullet gunshot with a link to bloodstain pattern analysis
,”
Phys. Rev. Fluids
2
,
073906
(
2017
).
16.
P. M.
Comiskey
,
A. L.
Yarin
, and
D.
Attinger
, “
Theoretical and experimental investigation of forward spatter of blood from a gunshot
,”
Phys. Rev. Fluids
3
,
063901
(
2018
).
17.
P. M.
Comiskey
,
A. L.
Yarin
, and
D.
Attinger
, “
Hydrodynamics of forward blood spattering caused by a bullet of general shape
,”
Phys. Fluids
31
,
084103
(
2019
).
18.
P. M.
Comiskey
and
A. L.
Yarin
, “
Self-similar turbulent vortex rings: Interaction of propellant gases with blood backspatter and the transport of gunshot residue
,”
J. Fluid Mech.
876
,
859
880
(
2019
).
19.
A. L.
Yarin
, “
Self-similarity
,” in
Springer Handbook of Experimental Fluid Mechanics
(
Springer
,
2007
), pp.
57
82
.
20.
G.
Li
,
N.
Sliefert
,
J. B.
Michael
, and
A. L.
Yarin
, “
Blood backspatter interaction with propellant gases
,”
Phys. Fluids
33
,
043318
(
2021
).
21.
N.
Sliefert
,
G.
Li
,
J. B.
Michael
, and
A. L.
Yarin
, “
Experimental and numerical study of blood backspatter interaction with firearm propellant gases
,”
Phys. Fluids
33
,
043319
(
2021
).
22.
P. M.
Comiskey
,
A. L.
Yarin
, and
D.
Attinger
, “
High-speed video analysis of forward and backward spattered blood droplets
,”
Forensic Sci. Int.
276
,
134
141
(
2017
).
23.
D.
Attinger
,
P. M.
Comiskey
,
A. L.
Yarin
, and
K.
de Brabanter
, “
Determining the region of origin of blood spatters using probabilities and fluid dynamics
,”
Forensic Sci. Int.
298
,
323
331
(
2019
).
24.
P. M.
Comiskey
,
D.
Attinger
, and
A. L.
Yarin
, “
Implications of two backward blood spatter models based on fluid dynamics for bloodstain pattern analysis
,”
Forensic Sci. Int.
301
,
299
305
(
2019
).
25.
P. M.
Comiskey
and
A. L.
Yarin
, “
Friction coefficient of an intact free liquid jet moving in air
,”
Exp. Fluids
59
,
65
(
2018
).
26.
Y.
Kitamura
,
E.
Kazunori
, and
T.
Teruo
, “
Drop formation from liquid jet ejected from a rotating nozzle
,”
J. Chem. Eng. Jpn.
10
,
1
5
(
1977
).
27.
M.
Broumand
,
A.
Asgarian
,
M.
Bussmann
,
K.
Chattopadhyay
, and
M. J.
Thomson
, “
Spatio-temporal dynamics and disintegration of a fan liquid sheet
,”
Phys. Fluids
33
,
112109
112129
(
2021
).
28.
A.
Asgarian
,
H.
Martin
,
S.
Ruediger
,
B.
Markus
, and
C.
Kinnor
, “
Experiments and modeling of the breakup mechanisms of an attenuating liquid sheet
,”
Int. J. Multiphase Flow
130
,
103347
103365
(
2020
).
29.
G.
Brenn
,
Z.
Prebeg
,
D.
Rensink
, and
A. L.
Yarin
, “
The control of spray formation by vibrational excitation of flat-fan and conical liquid sheets
,”
Atomization Sprays
15
,
661
685
(
2005
).
30.
B.-H.
Bang
,
C.-S.
Ahn
,
S. S.
Yoon
, and
A. L.
Yarin
, “
Breakup of swirling films issued from a pressure-swirl atomizer
,”
Fuel
332
,
125847
(
2023
).
31.
A. L.
Yarin
,
Free Liquid Jets and Films: Hydrodynamics and Rheology
(
Longman Scientific & Technical and John Wiley & Sons
,
Harlow, New York
,
1993
).
32.
L.-P.
Hsiang
and
M. F.
Gerard
, “
Drop properties after secondary breakup
,”
Int. J. Multiphase Flow
19
,
721
735
(
1993
).
33.
Y.
Troitskaya
,
A.
Kandaurov
,
O.
Ermakova
,
D.
Kozlov
,
D.
Sergeev
, and
S.
Zilitinkevich
, “
Bag-breakup fragmentation as the dominant mechanism of sea-spray production in high winds
,”
Sci. Rep.
7
,
1614
(
2017
).
34.
A. L.
Yarin
,
I. V.
Roisman
, and
C.
Tropea
,
Collision Phenomena in Liquids and Solids
(
Cambridge University Press
,
Cambridge
,
2017
).
35.
J.
Michael
,
N.
Sliefert
,
D.
Attinger
,
R.
Faflak
, and
S.
McCleary
(
2021
). “High speed imaging sequences of muzzle gas and muzzle gas/blood interactions,”
Dataset
. https://doi.org/10.25380/iastate.16862209
36.
N. D.
Sliefert
, “
Influence of muzzle gases on blood droplet backspatter
,” Doctoral dissertation
(Iowa State University
,
2020
).
37.
J.
Michael
,
N.
Sliefert
,
D.
Guildenbecher
,
R.
Faflak
, and
D.
Attinger
, “
In situ measurement of blood backspatter droplet size distributions via high-speed digital inline holography
,” (unpublished) (
2023
).
38.
D. R.
Guildenbecher
,
M. A.
Cooper
, and
P. E.
Sojka
, “
High-speed (20 kHz) digital in-line holography for transient particle tracking and sizing in multiphase flows
,”
Appl. Opt.
55
,
2892
2903
(
2016
).
39.
E. L.
Crow
and
K.
Shimizu
,
Lognormal Distributions
(
Marcel Dekker
,
New York
,
1987
).
40.
R. E.
Walpole
,
R. H.
Myers
,
S. L.
Myers
, and
K.
Ye
,
Probability & Statistics for Engineers & Scientists
(
Pearson-Prentice Hall
,
Upper Saddle River
, 2007).
You do not currently have access to this content.