The linear stability of a fully developed liquid–metal magnetohydrodynamic pipe flow subject to a transverse magnetic field is studied numerically. Because of the lack of axial symmetry in the mean velocity profile, we need to perform a BiGlobal stability analysis. For that purpose, we develop a two-dimensional complex eigenvalue solver relying on a Chebyshev–Fourier collocation method in physical space. By performing an extensive parametric study, we show that in contrast to the Hagen–Poiseuille flow known to be linearly stable for all Reynolds numbers, the magnetohydrodynamic pipe flow with transverse magnetic field is unstable to three-dimensional disturbances at sufficiently high values of the Hartmann number and wall conductance ratio. The instability observed in this regime is attributed to the presence of velocity overspeed in the so-called Roberts layers and the corresponding inflection points in the mean velocity profile. The nature and characteristics of the most unstable modes are investigated, and we show that they vary significantly depending on the wall conductance ratio. A major result of this paper is that the global critical Reynolds number for the magnetohydrodynamic pipe flow with transverse magnetic field is Re = 45 230, and it occurs for a perfectly conducting pipe wall and the Hartmann number Ha = 19.7.

1.
M.
Lessen
,
S. G.
Sadler
, and
T.-Y.
Liu
, “
Stability of pipe Poiseuille flow
,”
Phys. Fluids
11
,
1404
1409
(
1968
).
2.
A.
Meseguer
and
L. N.
Trefethen
, “
Linearized pipe flow to Reynolds number 107
,”
J. Comput. Phys.
186
,
178
197
(
2003
).
3.
O.
Reynolds
, “
An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels
,”
Proc. R. Soc. London
174
,
935
982
(
1883
).
4.
I. J.
Wygnanski
and
F. H.
Champagne
, “
On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug
,”
J. Fluid Mech.
59
,
281
335
(
1973
).
5.
P. J.
Schmid
and
D. S.
Henningson
,
Stability and Transition in Shear Flows
,
1st ed.
(
Springer
,
2001
).
6.
C. C. T.
Pringle
and
R. R.
Kerswell
, “
Using nonlinear transient growth to construct the minimal seed for shear flow turbulence
,”
Phys. Rev. Lett.
105
,
154502
(
2010
).
7.
R. R.
Kerswell
, “
Nonlinear nonmodal stability Theory
,”
Annu. Rev. Fluid Mech.
50
,
319
345
(
2018
).
8.
C. C. T.
Pringle
,
A. P.
Willis
, and
R. R.
Kerswell
, “
Fully localised nonlinear energy growth optimals in pipe flow
,”
Phys. Fluids
27
,
064102
(
2015
).
9.
M.
Avila
,
D.
Barkley
, and
B.
Hof
, “
Transition to turbulence in pipe flow
,”
Annu. Rev. Fluid Mech.
55
,
575
602
(
2023
).
10.
J.
Hartmann
and
F.
Lazarus
, “
Hg-dynamics II: Experimental investigations on the flow of mercury in a homogeneous magnetic field
,”
Mat. Fys. Medd. K. Dan. Vidensk. Selsk.
15
,
1
45
(
1937
).
11.
Q.
Chen
,
Y.
Jiang
,
J.
Yan
, and
M.
Qin
, “
Progress in modeling of fluid flows in crystal growth processes
,”
Prog. Nat. Sci.
18
,
1465
1473
(
2008
).
12.
R.
Chaudhary
,
B. G.
Thomas
, and
S. P.
Vanka
, “
Effect of electromagnetic ruler braking (EMBr) on transient turbulent flow in continuous slab casting using large eddy simulations
,”
Metall. Mater. Trans. B
43
,
532
553
(
2012
).
13.
A. B.
Tsinober
, “
MHD flow drag reduction
,” in
Viscous Drag Reduction in Boundary Layers
, edited by
D.
Bushnell
and
J. N.
Hefner
(
AIAA
,
1990
), pp.
327
350
.
14.
J.
Priede
,
S.
Aleksandrova
, and
S.
Molokov
, “
Linear stability of Hunt's flow
,”
J. Fluid Mech.
649
,
115
134
(
2010
).
15.
J.
Priede
,
S.
Aleksandrova
, and
S.
Molokov
, “
Linear stability of magnetohydrodynamic flow in a perfectly conducting rectangular duct
,”
J. Fluid Mech.
708
,
111
127
(
2012
).
16.
J.
Priede
,
T.
Arlt
, and
L.
Bühler
, “
Linear stability of magnetohydrodynamic flow in a square duct with thin conducting walls
,”
J. Fluid Mech.
788
,
129
146
(
2016
).
17.
T.
Tagawa
, “
Linear stability analysis of liquid metal flow in an insulating rectangular duct under external uniform magnetic field
,”
Fluids
4
,
177
(
2019
).
18.
D.
Krasnov
,
O.
Zikanov
,
M.
Rossi
, and
T.
Boeck
, “
Optimal linear growth in magnetohydrodynamic duct flow
,”
J. Fluid Mech.
653
,
273
299
(
2010
).
19.
O.
Zikanov
,
D.
Krasnov
,
T.
Boeck
,
A.
Thess
, and
M.
Rossi
, “
Laminar-turbulent transition in magnetohydrodynamic duct, pipe, and channel flows
,”
Appl. Mech. Rev.
66
,
030802
(
2014
).
20.
A.
Blishchik
and
S.
Kenjereš
, “
Observation of a novel flow regime caused by finite electric wall conductance in an initially turbulent magnetohydrodynamic duct flow
,”
Phys. Rev. E
104
,
L013101
(
2021
).
21.
A.
Blishchik
and
S.
Kenjereš
, “
Turbulence suppression and regeneration in a magnetohydrodynamic duct flow due to influence of arbitrary electrically conductive walls
,”
Phys. Fluids
34
,
045101
(
2022
).
22.
O.
Zikanov
,
Y. I.
Listratov
, and
V. G.
Sviridov
, “
Natural convection in horizontal pipe flow with a strong transverse magnetic field
,”
J. Fluid Mech.
720
,
486
516
(
2013
).
23.
J.
Hu
,
H.
Wu
, and
B.
Song
, “
Linear instability and nonlinear flow states in a horizontal pipe flow under bottom heating and transverse magnetic field
,”
J. Fluid Mech.
953
,
A33
(
2022
).
24.
H. O.
Åkerstedt
, “
Damping of transient energy growth of three-dimensional perturbations in hydromagnetic pipe flow
,”
Fluid Dyn. Res.
15
,
295
312
(
1995
).
25.
R. A.
Gardner
and
P. S.
Lykoudis
, “
Magneto-fluid-mechanic pipe flow in a transverse magnetic field. Part 1. Isothermal flow
,”
J. Fluid Mech.
47
,
737
764
(
1971
).
26.
L.
Moriconi
, “
Magnetic dissipation of near-wall turbulent coherent structures in magnetohydrodynamic pipe flows
,”
Phys. Rev. E
101
,
043111
(
2020
).
27.
S.
Ihara
,
K.
Tajima
, and
A.
Matsushima
, “
The flow of conducting fluids in circular pipes with finite conductivity under uniform transverse magnetic fields
,”
J. Appl. Mech.
34
,
29
36
(
1967
).
28.
R. R.
Gold
, “
Magnetohydrodynamic pipe flow. Part 1
,”
J. Fluid Mech.
13
,
505
512
(
1962
).
29.
J. A.
Shercliff
, “
The flow of conducting fluids in circular pipes under transverse magnetic fields
,”
J. Fluid Mech.
1
,
644
666
(
1956
).
30.
S. A.
Samad
, “
The flow of conducting fluids through circular pipes having finite conductivity and finite thickness under uniform transverse magnetic fields
,”
Int. J. Eng. Sci.
19
,
1221
1232
(
1981
).
31.
S.
Vantieghem
,
X.
Albets-Chico
, and
B.
Knaepen
, “
The velocity profile of laminar MHD flows in circular conducting pipes
,”
Theor. Comput. Fluid Dyn.
23
,
525
533
(
2009
).
32.
V.
Theofilis
, “
Global linear instability
,”
Annu. Rev. Fluid Mech.
43
,
319
352
(
2011
).
33.
U.
Müller
and
L.
Bühler
,
Magnetofluiddynamics in Channels and Containers
,
1st ed
. (
Springer
,
2001
).
34.
J. P.
Boyd
,
Chebyshev and Fourier Spectral Methods
,
2nd ed.
(
Dover Publications, Inc
.,
2000
).
35.
L. N.
Trefethen
,
Spectral Methods in MATLAB
(
SIAM
,
2000
).
36.
A. V.
Boiko
and
Y. M.
Nechepurenko
, “
Numerical spectral analysis of temporal stability of laminar duct flows with constant cross sections
,”
Comput. Math. Math. Phys.
48
,
1699
1714
(
2008
).
37.
K. V.
Demyanko
, “
Numerical model for the investigation of hydrodynamic stability of shear flows in pipes of elliptic cross-section
,”
Russ. J. Numer. Anal. Math. Modell.
34
,
301
316
(
2019
).
38.
C. R.
Harris
,
K. J.
Millman
,
S. J.
van der Walt
,
R.
Gommers
,
P.
Virtanen
,
D.
Cournapeau
,
E.
Wieser
,
J.
Taylor
,
S.
Berg
, and
N. J.
Smith
, “
Array programming with NumPy
,”
Nature
585
,
357
362
(
2020
).
39.
P.
Virtanen
,
R.
Gommers
,
T. E.
Oliphant
,
M.
Haberland
,
T.
Reddy
,
D.
Cournapeau
,
E.
Burovski
,
P.
Peterson
,
W.
Weckesser
, and
J.
Bright
, “
SciPy 1.0: Fundamental algorithms for scientific computing in Python
,”
Nat. Methods
17
,
261
272
(
2020
).
40.
V.
Hernandez
,
J. E.
Roman
, and
V. E.
Vidal
, “
SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems
,”
ACM Trans. Math. Software
31
,
351
362
(
2005
).
41.
P. J.
Schmid
and
D. S.
Henningson
, “
Optimal energy density growth in Hagen–Poiseuille flow
,”
J. Fluid Mech.
277
,
197
225
(
1994
).
42.
T.
Tatsumi
and
T.
Yoshimura
, “
Stability of the laminar flow in a rectangular duct
,”
J. Fluid Mech.
212
,
437
449
(
1990
).
43.
R. C.
Lock
, “
The stability of the flow of an electrically conducting fluid between parallel planes under a transverse magnetic field
,”
Proc. R. Soc. London, Ser. A
233
,
105
125
(
1955
).
44.
M.
Takashima
, “
The stability of the modified plane Poiseuille flow in the presence of a transverse magnetic field
,”
Fluid Dyn. Res.
17
,
293
310
(
1996
).
45.
R. R.
Kerswell
and
A.
Davey
, “
On the linear instability of elliptic pipe flow
,”
J. Fluid Mech.
316
,
307
324
(
1996
).
46.
B. J.
Bayly
,
S. A.
Orszag
, and
T.
Herbert
, “
Instability mechanisms in shear-flow transition
,”
Annu. Rev. Fluid Mech.
20
,
359
391
(
1988
).
47.
X.
Zhang
,
C.
Pan
, and
Z.
Xu
, “
Experimental investigations on liquid metal MHD turbulent flows through a circular pipe with a conductive wall
,”
Fusion Eng. Des.
125
,
647
652
(
2017
).
48.
F.
Alizard
and
J.-C.
Robinet
, “
Spatially convective global modes in a boundary layer
,”
Phys. Fluids
19
,
114105
(
2007
).
49.
R. J.
Deissler
, “
The convective nature of instability in plane Poiseuille flow
,”
Phys. Fluids
30
,
2303
(
1987
).
50.
P.
Huerre
and
P. A.
Monkewitz
, “
Local and global instabilities in spatially developing flows
,”
Annu. Rev. Fluid Mech.
22
,
473
537
(
1990
).
You do not currently have access to this content.