Micro-combustors, which are emerging as portable power sources, have serious flame stabilization issues due to enhanced heat losses. Hydrogen, an eco-friendly alternative to conventional fossil fuels, can be a potential fuel for micro-combustors because of its high calorific value, leading to high energy density. In the present work, numerical simulations of premixed lean (equivalence ratio = 0.5) hydrogen-air flames in a 2 mm wide channel with three different wall materials (glass, steel, and aluminum) were performed. The effects of the wall material on the dynamics of the flames were extensively studied. The walls of the combustor play an important role by conducting heat upstream and facilitating ignition and stabilization of the flame. For different values of wall thermal diffusivity, periodically oscillating flames of varying frequencies ( ∼ 400 − 1200   Hz) and intermittent bursting flames were observed. Time series analysis and modal decomposition of temperature fields were utilized to quantify the flame dynamics and to identify the dominant structures of the flames. A recurrence analysis using the temperature time series data revealed significant differences in flame dynamics, including period-2 oscillations and intermittency, for different wall materials. The underlying physics behind the periodic oscillations and intermittent bursting has been explained.

1.
L.
Sitzki
,
K.
Borer
,
S.
Wussow
,
E.
Maruta
, and
P.
Ronney
, “
Combustion in microscale heat-recirculating burners
,” in
Proceedings of the 39th Aerospace Sciences Meeting and Exhibit
(
AIAA
,
2001
), p.
1087
.
2.
P. D.
Ronney
, “
Analysis of non-adiabatic heat-recirculating combustors
,”
Combust. Flame
135
(
4
),
421
439
(
2003
).
3.
N. S.
Kaisare
and
D. G.
Vlachos
, “
A review on microcombustion: Fundamentals, devices and applications
,”
Prog. Energy Combust. Sci.
38
(
3
),
321
359
(
2012
).
4.
A.
Tang
,
J.
Pan
,
W.
Yang
,
Y.
Xu
, and
Z.
Hou
, “
Numerical study of premixed hydrogen/air combustion in a micro planar combustor with parallel separating plates
,”
Int. J. Hydrogen Energy
40
(
5
),
2396
2403
(
2015
).
5.
J.
Ganley
,
E.
Seebauer
, and
R.
Masel
, “
Porous anodic alumina microreactors for production of hydrogen from ammonia
,”
AIChE J.
50
(
4
),
829
834
(
2004
).
6.
J.
Chen
,
W.
Song
, and
D.
Xu
, “
Compact steam-methane reforming for the production of hydrogen in continuous flow microreactor systems
,”
ACS Omega
4
(
13
),
15600
15614
(
2019
).
7.
X.
Kang
,
R. J.
Gollan
,
P. A.
Jacobs
, and
A.
Veeraragavan
, “
On the influence of modelling choices on combustion in narrow channels
,”
Comput. Fluids
144
,
117
136
(
2017
).
8.
Y.
Ju
and
B.
Xu
, “
Studies of the effects of radical quenching and flame stretch on mesoscale combustion
,” AIAA Paper No. 2006-1351,
2006
.
9.
N.
Srivastava
,
B.
Aravind
,
R. K.
Velamati
,
S.
Minaev
, and
S.
Kumar
, “
Numerical investigations on behaviour bifurcation of premixed H2-air flames in mesoscale tubes
,”
Combust. Theory Modell.
23
(
6
),
969
993
(
2019
).
10.
Z. W.
Li
,
S. K.
Chou
,
C.
Shu
,
H.
Xue
, and
W. M.
Yang
, “
Characteristics of premixed flame in microcombustors with different diameters
,”
Appl. Therm. Eng.
25
(
2
),
271
281
(
2005
).
11.
T. T.
Leach
,
C. P.
Cadou
, and
G. S.
Jackson
, “
Effect of structural conduction and heat loss on combustion in micro-channels
,”
Combust. Theory Modell.
10
(
1
),
85
103
(
2006
).
12.
S.
Chakraborty
,
A.
Mukhopadhyay
, and
S.
Sen
, “
Interaction of Lewis number and heat loss effects for a laminar premixed flame propagating in a channel
,”
Int. J. Therm. Sci.
47
(
1
),
84
92
(
2008
).
13.
T.
Cai
,
A.
Tang
,
D.
Zhao
,
C.
Zhou
, and
Q.
Huang
, “
Flame dynamics and stability of premixed methane/air in micro-planar quartz combustors
,”
Energy
193
,
116767
(
2020
).
14.
K.
Maruta
,
T.
Kataoka
,
N. I.
Kim
,
S.
Minaev
, and
R.
Fursenko
, “
Characteristics of combustion in a narrow channel with a temperature gradient
,”
Proc. Combust. Inst.
30
(
2
),
2429
2436
(
2005
).
15.
G.
Pizza
,
C. E.
Frouzakis
, and
J.
Mantzaras
, “
Chaotic dynamics in premixed hydrogen/air channel flow combustion
,”
Combust. Theory Modell.
16
(
2
),
275
299
(
2012
).
16.
T.
Miroshnichenko
,
V.
Gubernov
,
K.
Maruta
, and
S.
Minaev
, “
Diffusive–thermal oscillations of rich premixed hydrogen–air flames in a microflow reactor
,”
Combust. Theory Modell.
20
(
2
),
313
327
(
2016
).
17.
C. H.
Bhuvan
,
K.
Hiranandani
,
B.
Aravind
,
V.
Nair
, and
S.
Kumar
, “
Novel flame dynamics in rich mixture of premixed propane–air in a planar microcombustor
,”
Phys. Fluids
32
(
10
),
103604
(
2020
).
18.
S.
Singh
,
J. E.
Veetil
,
N.
Kumbhakarna
,
R. K.
Velamati
, and
S.
Kumar
, “
Flame dynamics of premixed CH4/H2/air flames in a microchannel with a wall temperature gradient
,”
Combust. Theory Modell.
26
(
6
),
989
1013
(
2022
).
19.
P. R.
Resende
,
L. L.
Ferrás
, and
A. M.
Afonso
, “
Flame dynamics of hydrogen/air mixture in a wavy micro-channel
,”
Int. J. Hydrogen Energy
48
,
13682
(
2023
).
20.
A.
Brambilla
,
C. E.
Frouzakis
,
J.
Mantzaras
,
R.
Bombach
, and
K.
Boulouchos
, “
Flame dynamics in lean premixed CO/H2/air combustion in a mesoscale channel
,”
Combust. Flame
161
(
5
),
1268
1281
(
2014
).
21.
U.
Rana
,
S.
Chakraborty
, and
S. K.
Som
, “
Dynamics and thermodynamics of co-flow non-premixed methane–air flame in a cylindrical micro combustor with heat recirculating wall
,”
Combust. Theory Modell.
21
(
4
),
677
699
(
2017
).
22.
J.
Wan
,
H.
Zhao
, and
V.
Akkerman
, “
Anchoring mechanisms of a holder-stabilized premixed flame in a preheated mesoscale combustor
,”
Phys. Fluids
32
(
9
),
097103
(
2020
).
23.
D. G.
Norton
and
D.
Vlachos
, “
Combustion characteristics and flame stability at the microscale: A CFD study of premixed methane/air mixtures
,”
Chem. Eng. Sci.
58
,
4871
4882
(
2003
).
24.
Y.
Xiang
,
Z.
Yuan
,
S.
Wang
, and
A.
Fan
, “
Effects of flow rate and fuel/air ratio on propagation behaviors of diffusion H2/air flames in a micro-combustor
,”
Energy
179
,
315
322
(
2019
).
25.
Z.
Su
,
W.
Yang
, and
J.
Wan
, “
Ultra-lean dynamics of holder-stabilized hydrogen-enriched flames in a preheated mesoscale combustor near the laminar critical limit
,”
Phys. Fluids
34
(
10
),
107117
(
2022
).
26.
D.
Sharma
,
S.
Garnayak
,
A.
Bandopadhyay
,
S. K.
Dash
, and
M. R.
Vanteru
, “
Influence of jet velocity and heat recuperation on the flame stabilization in a non-premixed mesoscale combustor: An exergetic approach
,”
Phys. Fluids
35
(
2
),
025110
(
2023
).
27.
Z.
Yuan
and
A.
Fan
, “
The effects of aspect ratio on CH4/air flame stability in rectangular mesoscale combustors
,”
J. Energy Inst.
93
(
2
),
792
801
(
2020
).
28.
H.
Nakamura
,
A.
Fan
,
S.
Minaev
,
E.
Sereshchenko
,
R.
Fursenko
,
Y.
Tsuboi
, and
K.
Maruta
, “
Bifurcations and negative propagation speeds of methane/air premixed flames with repetitive extinction and ignition in a heated microchannel
,”
Combust. Flame
159
(
4
),
1631
1643
(
2012
).
29.
A.
Alipoor
and
K.
Mazaheri
, “
Maps of flame dynamics for premixed lean hydrogen-air combustion in a heated microchannel
,”
Energy
194
,
116852
(
2020
).
30.
A. P.
Singh
,
V. R.
Kishore
,
Y.
Yoon
,
S.
Minaev
, and
S.
Kumar
, “
Effect of wall thermal boundary conditions on flame dynamics of CH4-air and H2-air mixtures in straight microtubes
,”
Combust. Sci. Technol.
189
(
1
),
150
168
(
2017
).
31.
N. I.
Kim
and
K.
Maruta
, “
A numerical study on propagation of premixed flames in small tubes
,”
Combust. Flame
146
(
1
),
283
301
(
2006
).
32.
K.
Bioche
,
L.
Vervisch
, and
G.
Ribert
, “
Premixed flame–wall interaction in a narrow channel: Impact of wall thermal conductivity and heat losses
,”
J. Fluid Mech.
856
,
5
35
(
2018
).
33.
S.
Sarkar
,
A.
Mukhopadhyay
, and
S.
Sen
, “
Numerical investigation of the effects of polydisperse water sprays on extinction conditions of counterflow methane non-premixed flames
,”
Combust. Theory Modell.
23
(
4
),
626
650
(
2019
).
34.
ANSYS
,
Ansys fluent-CFD software—Ansys
,
2016
.
35.
N.
Marwan
,
M. C.
Romano
,
M.
Thiel
, and
J.
Kurths
, “
Recurrence plots for the analysis of complex systems
,”
Phys. Rep.
438
(
5–6
),
237
329
(
2007
).
36.
Y.
Guan
,
P.
Liu
,
B.
Jin
,
V.
Gupta
, and
L. K. B.
Li
, “
Nonlinear time-series analysis of thermoacoustic oscillations in a solid rocket motor
,”
Exp. Therm. Fluid Sci.
98
,
217
226
(
2018
).
37.
U.
Sen
,
T.
Gangopadhyay
,
C.
Bhattacharya
,
A.
Mukhopadhyay
, and
S.
Sen
, “
Dynamic characterization of a ducted inverse diffusion flame using recurrence analysis
,”
Combust. Sci. Technol.
190
(
1
),
32
56
(
2018
).
38.
S.
De
,
A.
Bhattacharya
,
S.
Mondal
,
A.
Mukhopadhyay
, and
S.
Sen
, “
Application of recurrence quantification analysis for early detection of lean blowout in a swirl-stabilized dump combustor
,”
Chaos
30
(
4
),
043115
(
2020
).
39.
F. Takens
, “
Detecting strange attractors in turbulence
,” in
Dynamical Systems and Turbulence, Warwick 1980
(
Springer
,
1981
), pp.
366
381
.
40.
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
(
Cambridge University Press
,
2004
), Vol.
7
.
41.
G.
Berkooz
,
P.
Holmes
, and
J. L.
Lumley
, “
The proper orthogonal decomposition in the analysis of turbulent flows
,”
Annu. Rev. Fluid Mech.
25
(
1
),
539
575
(
1993
).
You do not currently have access to this content.