We study the effect of spin ( 0 ≤ α ≤ 2) of a cylinder, placed in uniform flow, on the transition of the boundary layer. Large Eddy Simulation, with the Sigma turbulence model to account for the sub-grid scales, is carried out using a stabilized finite element formulation. The Reynolds numbers ( R e = 0.6 × 10 5 and 1.0 × 10 5) lie in the high-subcritical regime for a non-rotating cylinder where the boundary layer separates in a laminar state and does not reattach. Magnus effect is observed at low α wherein separation is delayed on the retreating side and preponed on the advancing side, resulting in a lift force that increases with increase in α. At a certain critical α, the boundary layer on the advancing side transitions to a turbulent state, causing it to reattach. A laminar separation bubble (LSB) forms, significantly delaying the final separation and increasing suction. At R e = 1.0 × 10 5, this suction overcomes that on the retreating side, leading to a reversal in the direction of lift force, referred to as the inverse Magnus effect. The LSB is accompanied by weakened vortex shedding at increased frequency. The spatial extent of the LSB and the magnitude of reverse lift, at a given Re, decreases with increase in α. The lift force changes direction yet again at a certain α marking the end of the inverse Magnus effect regime and beginning of the second Magnus effect regime. The LSB vanishes beyond a certain spin rate, and the boundary layer directly transitions to a turbulent state.

1.
C. H.
Williamson
, “
Vortex dynamics in the cylinder wake
,”
Annu. Rev. Fluid Mech.
28
,
477
539
(
1996
).
2.
A.
Roshko
, “
Perspectives on bluff body aerodynamics
,”
J. Wind Eng. Ind. Aerodyn.
49
,
79
100
(
1993
).
3.
A.
Roshko
, “
Experiments on the flow past a circular cylinder at very high Reynolds number
,”
J. Fluid Mech.
10
,
345
356
(
1961
).
4.
E.
Achenbach
, “
Distribution of local pressure and skin friction around a circular cylinder in cross-flow up to Re= 5 × 106
,”
J. Fluid Mech.
34
,
625
639
(
1968
).
5.
L.
Prandtl
, “
The Magnus effect and windpowered ships
,”
Naturwissenschaften
13
,
93
108
(
1925
).
6.
W. M.
Swanson
, “
The Magnus effect: A summary of investigations to date
,”
J. Basic Eng.
83
,
461
470
(
1961
).
7.
R. L.
Panton
,
Incompressible Flow
(
John Wiley & Sons
,
2013
).
8.
J.
Kim
,
H.
Choi
,
H.
Park
, and
J. Y.
Yoo
, “
Inverse Magnus effect on a rotating sphere: When and why
,”
J. Fluid Mech.
754
,
R2
(
2014
).
9.
S.
Mittal
and
B.
Kumar
, “
Flow past a rotating cylinder
,”
J. Fluid Mech.
476
,
303
334
(
2003
).
10.
S.
Kang
,
H.
Choi
, and
S.
Lee
, “
Laminar flow past a rotating circular cylinder
,”
Phys. Fluids
11
,
3312
3321
(
1999
).
11.
A.
Rao
,
A.
Radi
,
J. S.
Leontini
,
M. C.
Thompson
,
J.
Sheridan
, and
K.
Hourigan
, “
A review of rotating cylinder wake transitions
,”
J. Fluids Struct.
53
,
2
14
(
2015
).
12.
D.
Aljure
,
I.
Rodríguez
,
O.
Lehmkuhl
,
C. D.
Pérez-Segarra
, and
A.
Oliva
, “
Influence of rotation on the flow over a cylinder at Re= 5000
,”
Int. J. Heat Fluid Flow
55
,
76
90
(
2015
).
13.
Navrose
,
J.
Meena
, and
S.
Mittal
, “
Three-dimensional flow past a rotating cylinder
,”
J. Fluid Mech.
766
,
28
53
(
2015
).
14.
S.
Choi
,
H.
Choi
, and
S.
Kang
, “
Characteristics of flow over a rotationally oscillating cylinder at low Reynolds number
,”
Phys. Fluids
14
,
2767
2777
(
2002
).
15.
S.
Kumar
,
C.
Lopez
,
O.
Probst
,
G.
Francisco
,
D.
Askari
, and
Y.
Yang
, “
Flow past a rotationally oscillating cylinder
,”
J. Fluid Mech.
735
,
307
346
(
2013
).
16.
H.
Mittal
,
Q. M.
Al-Mdallal
, and
R. K.
Ray
, “
Locked-on vortex shedding modes from a rotationally oscillating circular cylinder
,”
Ocean Eng.
146
,
324
338
(
2017
).
17.
V.
Yogeswaran
and
S.
Mittal
, “
Vortex-induced and galloping response of a rotating circular cylinder
,” in
IUTAM Symposium on Bluff Body Flows
, edited by
S.
Mittal
and
G.
Biswas
(
IIT-Kanpur
,
India
,
2011
), pp.
153
156
.
18.
A.
Munir
,
M.
Zhao
,
H.
Wu
,
L.
Lu
, and
D.
Ning
, “
Three-dimensional numerical investigation of vortex-induced vibration of a rotating circular cylinder in uniform flow
,”
Phys. Fluids
30
,
053602
(
2018
).
19.
S. N.
Naik
,
S.
Vengadesan
, and
K. A.
Prakash
, “
Numerical study of fluid flow past a rotating elliptic cylinder
,”
J. Fluids Struct.
68
,
15
31
(
2017
).
20.
M.
Muto
,
M.
Tsubokura
, and
N.
Oshima
, “
Negative Magnus lift on a rotating sphere at around the critical Reynolds number
,”
Phys. Fluids
24
,
014102
(
2012
).
21.
N.
Sakib
and
B. L.
Smith
, “
Study of the reverse Magnus effect on a golf ball and a smooth ball moving through still air
,”
Exp. Fluids
61
,
115
(
2020
).
22.
G.
Chopra
and
S.
Mittal
, “
The intermittent nature of the laminar separation bubble on a cylinder in uniform flow
,”
Comput. Fluids
142
,
118
127
(
2017
).
23.
G.
Chopra
and
S.
Mittal
, “
Secondary vortex, laminar separation bubble and vortex shedding in flow past a low aspect ratio circular cylinder
,”
J. Fluid Mech.
930
,
A12
(
2022
).
24.
G.
Schewe
, “
On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds numbers
,”
J. Fluid Mech.
133
,
265
285
(
1983
).
25.
W.
Cheng
,
D.
Pullin
, and
R.
Samtaney
, “
Large-eddy simulation of flow over a rotating cylinder: The lift crisis at
R e d = 6 × 10 4,”
J. Fluid Mech.
855
,
371
407
(
2018
).
26.
G.
Chopra
and
S.
Mittal
, “
The effect of trip wire on transition of boundary layer on a cylinder
,”
Phys. Fluids
34
,
054103
(
2022
).
27.
T. E.
Tezduyar
,
S.
Mittal
,
S.
Ray
, and
R.
Shih
, “
Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements
,”
Comput. Methods Appl. Mech. Eng.
95
,
221
242
(
1992
).
28.
J. S. S.
Pandi
and
S.
Mittal
, “
Wake transitions and laminar separation bubble in the flow past an Eppler 61 airfoil
,”
Phys. Fluids
31
,
114102
(
2019
).
29.
F.
Nicoud
,
H. B.
Toda
,
O.
Cabrit
,
S.
Bose
, and
J.
Lee
, “
Using singular values to build a subgrid-scale model for large eddy simulations
,”
Phys. Fluids
23
,
085106
(
2011
).
30.
H.
Johari
and
K.
Stein
, “
Near wake of an impulsively started disk
,”
Phys. Fluids
14
,
3459
3474
(
2002
).
31.
S.
Takayama
and
K.
Aoki
, “
Flow characteristics around a rotating grooved circular cylinder with grooved of different depths
,”
J. Visualization
8
,
295
303
(
2005
).
32.
P. K.
Kundu
,
I. M.
Cohen
, and
D. R.
Dowling
,
Fluid Mechanics
(
Academic Press
,
2015
).
33.
P.
Bearman
, “
On vortex shedding from a circular cylinder in the critical Reynolds number regime
,”
J. Fluid Mech.
37
,
577
585
(
1969
).
34.
S.
Szepessy
and
P.
Bearman
, “
Aspect ratio and end plate effects on vortex shedding from a circular cylinder
,”
J. Fluid Mech.
234
,
191
217
(
1992
).
35.
A.
Desai
,
S.
Mittal
, and
S.
Mittal
, “
Experimental investigation of vortex shedding past circular cylinder in the high subcritical regime
,”
Phys. Fluids
32
,
014105
(
2020
).
36.
G.
Chopra
and
S.
Mittal
, “
Drag coefficient and formation length at the onset of vortex shedding
,”
Phys. Fluids
31
,
013601
(
2019
).
You do not currently have access to this content.