This paper proposes a versatile and robust immersed edge-based smoothed finite element method with the mass conservation algorithm (IESFEM/Mass) to solve partitioned fluid–structure interaction (FSI). A gradient smoothing technique was used to solve the system governing equations, which can improve the calculated capability of the linear triangular elements in two phases. Based on the quadratic sharp interface representation of immersed boundary, an extended fictitious domain constructed by a least squares method approximately corrected the residual flux error. The compatibility for boundary conditions on moving interfaces was satisfied, thus eliminating spurious oscillations. The results from all numerical examples were consistent with those from the existing experiments and published numerical solutions. Furthermore, the present divergence-free vector field had a faster-converged rate in the flow velocity, pressure, and FSI force. Even if in distorted meshes, the proposed algorithm maintained a stable accuracy improvement. The aerodynamics of one- and two-winged flapping motions in insect flight has been investigated through the IESFEM/Mass. It can be seen that the wing–wake interaction mechanism is a vital factor affecting the lift. The applicability of the present method in the biological FSI scenario was also well-demonstrated.

1.
J.
Han
,
Y.
Zhang
, and
G.
Chen
, “
Effects of individual horizontal distance on the three-dimensional bionic flapping multi-wings in different schooling configurations
,”
Phys. Fluids
31
,
041903
(
2019
).
2.
E. M.
Lau
and
W.
Huang
, “
Variations of flight patterns for falling flexible plates
,”
Phys. Fluids
33
,
081904
(
2021
).
3.
F.
Tian
,
H.
Dai
,
H.
Luo
,
J. F.
Doyle
, and
B.
Rousseau
, “
Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems
,”
J. Comput. Phys.
258
,
451
(
2014
).
4.
J.
Yao
,
G. R.
Liu
,
D. A.
Narmoneva
,
R. B.
Hinton
, and
Z.
Zhang
, “
Immersed smoothed finite element method for fluid–structure interaction simulation of aortic valves
,”
Comput. Mech.
50
,
789
(
2012
).
5.
Z. K.
Xu
,
C. Y.
Wang
,
S.
Xue
,
F.
He
,
P. F.
Hao
, and
X. W.
Zhang
, “
The erythrocyte destruction mechanism in non-physiological shear mechanical hemolysis
,”
Phys. Fluids
34
,
111901
(
2022
).
6.
H. H.
Hu
,
N. A.
Patankar
, and
M. Y.
Zhu
, “
Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian-Eulerian technique
,”
J. Comput. Phys.
169
,
427
(
2001
).
7.
F.
Sotiropoulos
and
X.
Yang
, “
Immersed boundary methods for simulating fluid–structure interaction
,”
Prog. Aeosp. Sci.
65
,
1
(
2014
).
8.
C. S.
Peskin
, “
The immersed boundary method
,”
Acta Numer.
11
,
479
(
2002
).
9.
M. B.
Friess
and
S.
Kokh
, “
Simulation of sharp interface multi-material flows involving an arbitrary number of components through an extended five-equation model
,”
J. Comput. Phys.
273
,
488
(
2014
).
10.
W. K.
Liu
,
Y. L.
Liu
,
D.
Farrell
,
L.
Zhang
,
X. S.
Wang
,
Y.
Fukui
,
N.
Patankar
,
Y. J.
Zhang
,
C.
Bajaj
,
J.
Lee
,
J. H.
Hong
,
X. Y.
Chen
, and
H.
Hsua
, “
Immersed finite element method and its applications to biological systems
,”
Comput. Methods Appl. Mech. Eng.
195
,
1722
(
2006
).
11.
J.
Zhang
,
H. J.
Sung
, and
W.
Huang
, “
Specialization of tuna: A numerical study on the function of caudal keels
,”
Phys. Fluids
32
,
111902
(
2020
).
12.
R.
Mittal
,
H.
Dong
,
M.
Bozkurttas
,
F. M.
Najjar
,
A.
Vargas
, and
A.
von Loebbecke
, “
A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries
,”
J. Comput. Phys.
227
,
4825
(
2008
).
13.
A.
Gilmanov
and
F.
Sotiropoulos
, “
A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies
,”
J. Comput. Phys.
207
,
457
(
2005
).
14.
C.
Liu
and
C.
Hu
, “
An efficient immersed boundary treatment for complex moving object
,”
J. Comput. Phys.
274
,
654
(
2014
).
15.
H.
Luo
,
H.
Dai
,
P. J.
Sousa
, and
B.
Yin
, “
On the numerical oscillation of the direct-forcing immersed-boundary method for moving boundaries
,”
Comput. Fluids
56
,
61
(
2012
).
16.
P. K.
Seshadri
and
A.
De
, “
A novel sharp interface immersed boundary framework for viscous flow simulations at arbitrary Mach number involving complex and moving boundaries
,”
Comput. Fluids
206
,
104579
(
2020
).
17.
C.
Jiang
,
J.
Yao
,
Z.
Zhang
,
G.
Gao
, and
G. R.
Liu
, “
A sharp-interface immersed smoothed finite element method for interactions between incompressible flows and large deformation solids
,”
Comput. Methods Appl. Mech. Eng.
340
,
24
(
2018
).
18.
P. K.
Seshadri
,
A.
Aravind
, and
A.
De
, “
Leading edge vortex dynamics in airfoils: Effect of pitching motion at large amplitudes
,”
J. Fluids Struct.
116
,
103796
(
2023
).
19.
J. H.
Seo
and
R.
Mittal
, “
A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations
,”
J. Comput. Phys.
230
,
7347
(
2011
).
20.
T.
Ye
,
R.
Mittal
,
H. S.
Udaykumar
, and
W.
Shyy
, “
An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries
,”
J. Comput. Phys.
156
,
209
(
1999
).
21.
H. S.
Udaykumar
,
R.
Mittal
,
P.
Rampunggoon
, and
A.
Khanna
, “
A sharp interface Cartesian grid method for simulating flows with complex moving boundaries
,”
J. Comput. Phys.
174
,
345
(
2001
).
22.
J.
Lee
,
J.
Kim
,
H.
Choi
, and
K.
Yang
, “
Sources of spurious force oscillations from an immersed boundary method for moving-body problems
,”
J. Comput. Phys.
230
,
2677
(
2011
).
23.
P. K.
Seshadri
and
A.
De
, “
A robust sharp interface based immersed boundary framework for moving body problems with applications to laminar incompressible flows
,”
Comput. Math. Appl.
83
,
24
(
2021
).
24.
M.
Kumar
and
S.
Roy
, “
A sharp interface immersed boundary method for moving geometries with mass conservation and smooth pressure variation
,”
Comput. Fluids
137
,
15
(
2016
).
25.
Z.
Pan
,
R.
Ma
,
D.
Wang
, and
A.
Chen
, “
A review of lattice type model in fracture mechanics: Theory, applications, and perspectives
,”
Eng. Fract. Mech.
190
,
382
(
2018
).
26.
F.
Ihlenburg
and
I.
Babuka
, “
Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation
,”
Int. J. Numer. Methods Eng.
38
,
3745
(
1995
).
27.
J. R.
Cho
and
H. W.
Lee
, “
Numerical study on liquid sloshing in baffled tank by nonlinear finite element method
,”
Comput. Methods Appl. Mech. Eng.
193
,
2581
(
2004
).
28.
G. R.
Liu
,
T. T.
Nguyen
,
K. Y.
Dai
, and
K. Y.
Lam
, “
Theoretical aspects of the smoothed finite element method (SFEM)
,”
Int. J. Numer. Methods Eng.
71
,
902
(
2007
).
29.
G. R.
Liu
,
H.
Nguyen-Xuan
, and
T.
Nguyen-Thoi
, “
A theoretical study on the smoothed FEM (S-FEM) models: Properties, accuracy and convergence rates
,”
Int. J. Numer. Methods Eng.
84
,
1222
(
2010
).
30.
G. R.
Liu
,
K. Y.
Dai
, and
T. T.
Nguyen
, “
A smoothed finite element method for mechanics problems
,”
Comput. Mech.
39
,
859
(
2007
).
31.
G. R.
Liu
, “
An overview on meshfree methods: For computational solid mechanics
,”
Int. J. Comput. Methods
13
,
1630001
(
2016
).
32.
K.
Wu
,
D.
Yang
, and
N.
Wright
, “
A coupled SPH-DEM model for fluid–structure interaction problems with free-surface flow and structural failure
,”
Comput. Struct.
177
,
141
(
2016
).
33.
P.
Jenny
,
S. H.
Lee
, and
H. A.
Tchelepi
, “
Multi-scale finite-volume method for elliptic problems in subsurface flow simulation
,”
J. Comput. Phys.
187
,
47
(
2003
).
34.
W. K.
Anderson
,
B. R.
Ahrabi
, and
J. C.
Newman
, “
Finite element solutions for turbulent flow over the NACA 0012 airfoil
,”
AIAA J.
54
,
2688
(
2016
).
35.
M. B.
Liu
and
Z. L.
Zhang
, “
Smoothed particle hydrodynamics (SPH) for modeling fluid–structure interactions
,”
Sci. China Phys. Mech. Astron.
62
,
984701
(
2019
).
36.
Q.
Yang
,
V.
Jones
, and
L.
McCue
, “
Free-surface flow interactions with deformable structures using an SPH-FEM model
,”
Ocean Eng.
55
,
136
(
2012
).
37.
E.
Hofstede
,
S.
Kottapalli
, and
A.
Shams
, “
Numerical prediction of flow induced vibrations in nuclear reactor applications
,”
Nucl. Eng. Des.
319
,
81
(
2017
).
38.
L.
Zhang
,
A.
Gerstenberger
,
X.
Wang
, and
W. K.
Liu
, “
Immersed finite element method
,”
Comput. Methods Appl. Mech. Eng.
193
,
2051
(
2004
).
39.
Y. K.
Hwang
,
J. E.
Bolander
,
Y. M.
Lim
, and
J.
Hong
, “
Coupling of SPH and Voronoi-cell lattice models for simulating fluid–structure interaction
,”
Comput. Part. Mech.
8
,
813
(
2021
).
40.
S.
Wang
,
S.
Huang
,
G.
Zhang
,
B.
Zhang
,
B.
Yang
, and
B.
Yan
, “
A three-dimensional hybrid immersed smoothed point interpolation method for fluid–structure interactions
,”
Ocean Eng.
248
,
110838
(
2022
).
41.
Z.
Zhang
,
G. R.
Liu
, and
B. C.
Khoo
, “
Immersed smoothed finite element method for two dimensional fluid–structure interaction problems
,”
Int. J. Numer. Methods Eng.
90
,
1292
(
2012
).
42.
Z.
Zhang
,
G. R.
Liu
, and
B. C.
Khoo
, “
A three dimensional immersed smoothed finite element method (3D IS-FEM) for fluid–structure interaction problems
,”
Comput. Mech.
51
,
129
(
2013
).
43.
G. R.
Liu
,
T.
Nguyen-Thoi
, and
K. Y.
Lam
, “
An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids
,”
J. Sound Vib.
320
,
1100
(
2009
).
44.
L.
Chen
,
T.
Rabczuk
,
S. P. A.
Bordas
,
G. R.
Liu
,
K. Y.
Zeng
, and
P.
Kerfriden
, “
Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth
,”
Comput. Methods Appl. Mech. Eng.
209–212
,
250
(
2012
).
45.
Z. C.
He
,
G. Y.
Li
,
Z. H.
Zhong
,
A. G.
Cheng
, and
Z.
Zhou
, “
An edge-based smoothed tetrahedron finite element method (ES-T-FEM) for 3D static and dynamic problems
,”
Comput. Mech.
52
,
221
(
2013
).
46.
T.
Nguyen-Thoi
,
G. R.
Liu
,
H. C.
Vu-Do
, and
H.
Nguyen-Xuan
, “
An edge-based smoothed finite element method for visco-elastoplastic analyses of 2D solids using triangular mesh
,”
Comput. Mech.
45
,
23
(
2009
).
47.
G. X.
Xu
,
E.
Li
,
V.
Tan
, and
G. R.
Liu
, “
Simulation of steady and unsteady incompressible flow using gradient smoothing method (GSM)
,”
Comput. Struct.
90–91
,
131
(
2012
).
48.
T.
He
, “
An efficient selective cell-based smoothed finite element approach to fluid–structure interaction
,”
Phys. Fluids
32
,
67102
(
2020
).
49.
T.
He
, “
Modeling fluid–structure interaction with the edge-based smoothed finite element method
,”
J. Comput. Phys.
460
,
111171
(
2022
).
50.
G. R.
Liu
and
G. X.
Xu
, “
A gradient smoothing method (GSM) for fluid dynamics problems
,”
Int. J. Numer. Methods Fluids
58
,
1101
(
2008
).
51.
C.
Jiang
,
Z.
Zhang
,
X.
Han
,
G.
Liu
, and
T.
Lin
, “
A cell-based smoothed finite element method with semi-implicit CBS procedures for incompressible laminar viscous flows
,”
Int. J. Numer. Methods Fluids
86
,
20
(
2018
).
52.
G.
Wang
,
Y.
Hong
,
S. H.
Huo
, and
C.
Jiang
, “
An immersed edge-based smoothed finite element method with the stabilized pressure gradient projection for fluid–structure interaction
,”
Comput. Struct.
270
,
106833
(
2022
).
53.
B.
Yan
,
S.
Wang
,
G.
Zhang
,
C.
Jiang
,
Q.
Xiao
, and
Z.
Sun
, “
A sharp-interface immersed smoothed point interpolation method with improved mass conservation for fluid–structure interaction problems
,”
J. Hydrodyn.
32
,
267
(
2020
).
54.
G.
Zhang
,
S.
Wang
,
H.
Lu
,
Z.
Zhang
, and
Z.
Zong
, “
Coupling immersed method with node-based partly smoothed point interpolation method (NPS-PIM) for large-displacement fluid–structure interaction problems
,”
Ocean Eng.
157
,
180
(
2018
).
55.
R.
Kamakoti
and
W.
Shyy
, “
Evaluation of geometric conversation law using pressure-based fluid solver and moving grid technique
,”
Int. J. Numer. Methods Heat Fluid Flow
14
,
851
(
2004
).
56.
J.
Kim
,
D.
Kim
, and
H.
Choi
, “
An immersed-boundary finite-volume method for simulations of flow in complex geometries
,”
J. Comput. Phys.
171
,
132
(
2001
).
57.
X. Y.
Lu
and
C.
Dalton
, “
Calculation of the timing of vortex formation from an oscillation cylinder
,”
J. Fluids Struct.
10
,
527
(
1996
).
58.
E.
Guilmineau
and
P.
Queutey
, “
A numerical simulation of vortex shedding from an oscillating circular cylinder
,”
J. Fluids Struct.
16
,
773
(
2002
).
59.
L. F.
Cong
,
B.
Teng
, and
L.
Cheng
, “
Hydrodynamic behavior of two-dimensional tandem-arranged flapping flexible foils in uniform flow
,”
Phys. Fluids
32
,
021903
(
2020
).
60.
B.
Yin
,
G.
Yang
, and
P.
Prapamonthon
, “
Finite obstacle effect on the aerodynamic performance of a hovering wing
,”
Phys. Fluids
31
,
101902
(
2019
).
61.
F. O.
Lehmann
,
H.
Wang
, and
T.
Engels
, “
Vortex trapping recaptures energy in flying fruit flies
,”
Sci. Rep.
11
,
6992
(
2021
).
62.
Y. K.
Wu
,
M.
Sun
, and
Y. P.
Liu
, “
The wing–wing interaction mechanism of bristled wing pair in fling motion
,”
Phys. Fluids
34
,
071903
(
2022
).
63.
J. D.
Eldredge
, “
Numerical simulation of the fluid dynamics of 2D rigid body motion with the vortex particle method
,”
J. Comput. Phys.
221
,
626
(
2007
).
64.
Z. J.
Wang
,
J. M.
Birch
, and
M. H.
Dickinson
, “
Unsteady forces and flows in low Reynolds number hovering flight: Two-dimensional computations vs robotic wing experiments
,”
J. Exp. Biol.
207
,
449
(
2004
).
65.
Z. J.
Wang
, “
Vortex shedding and frequency selection in flapping flight
,”
J. Fluid Mech.
410
,
323
(
2000
).
66.
N.
Arora
,
A.
Gupta
,
S.
Sanghi
,
H.
Aono
, and
W.
Shyy
, “
Lift-drag and flow structures associated with the clap and fling motion
,”
Phys. Fluids
26
,
071906
(
2014
).
67.
L. A.
Miller
and
C. S.
Peskin
, “
A computational fluid dynamics of clap and fling in the smallest insects
,”
J. Exp. Biol.
208
,
195
(
2005
).
You do not currently have access to this content.