There is a critical need for efficient and reliable active flow control strategies to reduce drag and noise in aerospace and marine engineering applications. While traditional full-order models based on the Navier–Stokes equations are not feasible, advanced model reduction techniques can be inefficient for active control tasks, especially with strong non-linearity and convection-dominated phenomena. Using convolutional recurrent autoencoder network architectures, deep-learning-based reduced-order models have been recently shown to be effective while performing several orders of magnitude faster than full-order simulations. However, these models encounter significant challenges outside the training data, limiting their effectiveness for active control and optimization tasks. In this study, we aim to improve the extrapolation capability by modifying the network architecture and integrating coupled space–time physics as an implicit bias. Reduced-order models via deep learning generally employ decoupling in spatial and temporal dimensions, which can introduce modeling and approximation errors. To alleviate these errors, we propose a novel technique for learning coupled spatial–temporal correlation using a three-dimensional convolution network. We assess the proposed technique against a standard encoder–propagator–decoder model and demonstrate a superior extrapolation performance. To demonstrate the effectiveness of the three-dimensional convolution network, we consider a benchmark problem of the flow past a circular cylinder at laminar flow conditions and use the spatiotemporal snapshots from the full-order simulations. Our proposed three-dimensional convolution architecture accurately captures the velocity and pressure fields for varying Reynolds numbers. Compared to the standard encoder–propagator–decoder network, the spatiotemporal-based three-dimensional convolution network improves the prediction range of Reynolds numbers outside of the training data.

1.
L. C.
Evans
,
Partial Differential Equations
(
American Mathematical Society
,
2010
), Vol.
19
.
2.
S. S.
Collis
,
R. D.
Joslin
,
A.
Seifert
, and
V.
Theofilis
, “
Issues in active flow control: Theory, control, simulation, and experiment
,”
Prog. Aerospace Sci.
40
(
4–5
),
237
289
(
2004
).
3.
J.
Donovan
,
L.
Kral
, and
A.
Cary
, “
Active flow control applied to an airfoil
,” in
36th AIAA Aerospace Sciences Meeting and Exhibit
,
1998
.
4.
R. D.
Joslin
and
D. N.
Miller
,
Fundamentals and Applications of Modern Flow Control
(
American Institute of Aeronautics and Astronautics
,
2009
).
5.
Y. M.
Chung
and
T.
Talha
, “
Effectiveness of active flow control for turbulent skin friction drag reduction
,”
Phys. Fluids
23
(
2
),
025102
(
2011
).
6.
R.
Jackson
,
Z.
Wang
, and
I.
Gursul
, “
Afterbody drag reduction using active flow control
,” in
55th AIAA Aerospace Sciences Meeting
,
2017
.
7.
T. J. R.
Hughes
,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
(
Dover Publications
,
2000
).
8.
C.
Johnson
,
Numerical Solution of Partial Differential Equations by the Finite Element Method
(
Dover Publications
,
2009
).
9.
R. J.
LeVeque
et al,
Finite Volume Methods for Hyperbolic Problems
(
Cambridge University Press
,
2002
), Vol.
31
.
10.
A.
Quarteroni
,
A.
Manzoni
, and
F.
Negri
,
Reduced Basis Methods for Partial Differential Equations: An Introduction
(
Springer
,
2015
), Vol.
92
.
11.
A.
Quarteroni
and
G.
Rozza
et al,
Reduced Order Methods for Modeling and Computational Reduction
(
Springer
,
2014
), Vol.
9
.
12.
W. H.
Schilders
,
H. A.
Van der Vorst
, and
J.
Rommes
,
Model Order Reduction: Theory, Research Aspects and Applications
(
Springer
,
2008
), Vol.
13
.
13.
S. S.
Ravindran
, “
A reduced-order approach for optimal control of fluids using proper orthogonal decomposition
,”
Int. J. Numer. Methods Fluids
34
(
5
),
425
448
(
2000
).
14.
K.
Carlberg
,
M. F.
Barone
, and
H.
Antil
, “
Galerkin v. Discrete-optimal projection in nonlinear model reduction
,” Report No. SAND-2015-2897J (
2015
).
15.
B.
Unger
and
S.
Gugercin
, “
Kolmogorov n-widths for linear dynamical systems
,”
Adv. Comput. Math.
45
(
5
),
2273
2286
(
2019
).
16.
S.
Mika
,
B.
Schölkopf
,
A. J.
Smola
,
K.-R.
Müller
,
M.
Scholz
, and
G.
Rätsch
, “
Kernel PCA and de-noising in feature spaces
,”
Adv. Neural Inf. Process. Syst.
11
,
536
542
(
1998
).
17.
G. E.
Hinton
and
R. R.
Salakhutdinov
, “
Reducing the dimensionality of data with neural networks
,”
Science
313
(
5786
),
504
507
(
2006
).
18.
M.
Seeger
,
H.
Nickisch
,
R.
Pohmann
, and
B.
Schölkopf
,
Advances in Neural Information Processing Systems
edited by
D.
Koller
,
D.
Schuurmans
,
Y.
Bengio
, and
L.
Bottou
(
MIT Press
,
2009
), Vol.
21
.
19.
Y.
LeCun
,
Y.
Bengio
, and
G.
Hinton
, “
Deep learning
,”
Nature
521
(
7553
),
436
444
(
2015
).
20.
I. K.
Deo
and
R.
Jaiman
, “
Predicting waves in fluids with deep neural network
,”
Phys. Fluids
34
(
6
),
067108
(
2022
).
21.
R.
Gupta
and
R.
Jaiman
, “
Three-dimensional deep learning-based reduced order model for unsteady flow dynamics with variable Reynolds number
,”
Phys. Fluids
34
(
3
),
033612
(
2022
).
22.
C.
Yang
,
X.
Yang
, and
X.
Xiao
, “
Data-driven projection method in fluid simulation
,”
Comput. Animation Virtual Worlds
27
(
3–4
),
415
424
(
2016
).
23.
A.
Goyal
and
Y.
Bengio
, “
Inductive biases for deep learning of higher-level cognition
,” arXiv:2011.15091 (
2020
).
24.
J.
Willard
,
X.
Jia
,
S.
Xu
,
M.
Steinbach
, and
V.
Kumar
, “
Integrating scientific knowledge with machine learning for engineering and environmental systems
,” arXiv:2003.04919 (
2021
).
25.
A.
Krishnapriyan
,
A.
Gholami
,
S.
Zhe
,
R.
Kirby
, and
M. W.
Mahoney
, “
Characterizing possible failure modes in physics-informed neural networks
,”
Adv. Neural Inf. Process. Syst.
34
,
26548
26560
(
2021
).
26.
M.
Raissi
,
P.
Perdikaris
, and
G. E.
Karniadakis
, “
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
,”
J. Comput. Phys.
378
,
686
707
(
2019
).
27.
W.
Mallik
,
R. K.
Jaiman
, and
J.
Jelovica
, “
Convolutional recurrent autoencoder network for learning underwater ocean acoustics
,” arXiv:2204.05573 (
2022
).
28.
S. R.
Bukka
,
A. R.
Magee
, and
R. K.
Jaiman
, “
Deep convolutional recurrent autoencoders for flow field prediction
,” in
International Conference on Offshore Mechanics and Arctic Engineering
(
American Society of Mechanical Engineers
,
2020
).
29.
S. R.
Bukka
,
R.
Gupta
,
A. R.
Magee
, and
R. K.
Jaiman
, “
Assessment of unsteady flow predictions using hybrid deep learning based reduced-order models
,”
Phys. Fluids
33
(
1
),
013601
(
2021
).
30.
I. K.
Deo
and
R.
Jaiman
, “
Learning wave propagation with attention-based convolutional recurrent autoencoder net
,” arXiv:2201.06628 (
2022
).
31.
R.
Gupta
and
R. K.
Jaiman
, “
A hybrid partitioned deep learning methodology for moving interface and fluid–structure interaction
,”
Comput. Fluids
233
,
105239
(
2022
).
32.
J. D.
Logan
,
An Introduction to Nonlinear Partial Differential Equations
(
John Wiley & Sons
,
2008
), Vol.
89
.
33.
W. E.
Schiesser
,
The Numerical Method of Lines: Integration of Partial Differential Equations
(
Elsevier
,
2012
).
34.
J.
Kačur
, “
Method of rothe in evolution equations
,” in
Equadiff 6
(
Springer
,
1986
), pp.
23
34
.
35.
P.
Pant
,
R.
Doshi
,
P.
Bahl
, and
A.
Barati Farimani
, “
Deep learning for reduced order modelling and efficient temporal evolution of fluid simulations
,”
Phys. Fluids
33
(
10
),
107101
(
2021
).
36.
M. M.
Bronstein
,
J.
Bruna
,
A.
LeCun
,
Y.
Szlam
, and
P.
Vandergheynst
, “
Geometric deep learning: Going beyond Euclidean data
,”
IEEE Signal Process. Mag.
34
(
4
),
18
42
(
2017
).
37.
Y.
Bengio
, “
Practical recommendations for gradient-based training of deep architectures
,” in
Neural Networks: Tricks of the Trade
(
Springer
,
2012
), pp.
437
478
.
38.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” arXiv:1412.6980 (
2014
).
39.
I.
Loshchilov
and
F.
Hutter
, “
Decoupled weight decay regularization
,” in
International Conference on Learning Representations
,
2019
.
40.
S.
Popinet
, “
Basilisk flow solver and PDE library
,” available at http://basilisk.fr/.
41.
B. M.
Sumer
et al,
Hydrodynamics around Cylindrical Strucures
(
World Scientific
,
2006
), Vol.
26
.
42.
C. H. K.
Williamson
, “
Vortex dynamics in the cylinder wake
,”
Annu. Rev. Fluid Mech.
28
(
1
),
477
539
(
1996
).
43.
C. H.
Williamson
, “
Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers
,”
J. Fluid Mech.
206
,
579
627
(
1989
).
44.
A.
Paszke
et al, “
Pytorch: An imperative style, high-performance deep learning library
,” arXiv:1912.01703 (
2019
).
45.
R.
Liaw
,
E.
Liang
,
R.
Nishihara
,
P.
Moritz
,
J. E.
Gonzalez
, and
I.
Stoica
, “
Tune: A research platform for distributed model selection and training
,” arXiv:1807.05118 (
2018
).
You do not currently have access to this content.