In this work, the near-field spray characteristics of electrohydrodynamic atomization (EHDA) for viscous liquids (ethanol, G20, G40, G50, G66, and glycerol) under various temperatures T (T is from 293 to 343 K), electric Bond numbers BoE (BoE is from 0 to 3.5) and dimensionless flow rate Q* (Q* is from 11 to 400) have been investigated by employing a high-speed imaging technique. The transition of the spray modes, variations of the spray angle θ1, semi-angle of Taylor cone θ2, and spraying droplet size (the Sauter mean diameter D32 and the probability density function) in the cone-jet mode have been studied experimentally. The results indicate that the stable cone-jet mode disappeared regardless of increasing BoE for working fluids with relatively higher viscosity (G50, G66, and glycerol). Nevertheless, the temperature elevation promotes the appearance of the stable cone-jet mode, e.g., G66 fluid could form the stable cone-jet as liquid temperature increases to 343 K. Moreover, the temperature plays a significant role in improving the spray angle and the semi-angle of the Taylor cone, as well as droplet size distributions. Specifically, in the case of G40 fluid, the spray angle increased from about 20.8°–23.9° at room temperature (293 K) to around 34.1°–37° at 343 K. Meanwhile, the droplet size distributions were shifting from 9.73–35.49 μm at 293 K to 4.39–23.84 μm at 343 K. The increase in temperature causes a dramatic viscosity reduction in highly viscous fluids, and the viscous dissipation during the atomization reduced substantially. As a result, more kinetic energy was retained to overcome the surface energy and thus improve the quality of the spray. In addition, the dimensionless droplet size D * in the stable cone-jet mode shows a linear scaling relationship with Q *. By introducing an Arrhenius-type equation to account for the temperature effect, a model to predict dimensionless droplet size D * under various dimensionless flow rates Q * and liquid temperatures T has been proposed. The model is in good agreement with the experimental data under the stable cone-jet mode in the EHDA for viscous fluids at a range of temperatures.

1.
T.
He
and
J. V.
Jokerst
, “
Structured micro/nano materials synthesized via electrospray: A review
,”
Biomater. Sci.
8
,
5555
5573
(
2020
).
2.
J.
Wei
,
Q.
Peng
,
Z.
Shi
,
B.
Xie
,
Z.
Kang
,
J.
Ye
, and
G.
Fu
, “
Investigation on the H2 fueled combustion with CH4 and C3H8 blending in a micro tube with/without fins
,”
Fuel
328
,
125314
(
2022
).
3.
L.
Zuo
,
J.
Wang
,
D.
Mei
,
D.
Wang
,
W.
Zhang
,
H.
Xu
,
J.
Yao
, and
T.
Zhao
, “
Atomization and combustion characteristics of a biodiesel–ethanol fuel droplet in a uniform DC electric field
,”
Phys. Fluids
35
,
013303
(
2023
).
4.
J.-b.
Cheng
,
L.-j.
Yang
,
Q.-f.
Fu
,
J.-x.
Ren
,
H.-b.
Tang
,
D.-k.
Sun
, and
X.-f.
Sun
, “
Pulsating modes of a Taylor cone under an unsteady electric field
,”
Phys. Fluids
34
,
012007
(
2022
).
5.
D.
Qiu
,
M. S.
Wilson
,
V. B.
Eisenbeis
,
R. K.
Harmel
,
E.
Riemer
,
T. M.
Haas
,
C.
Wittwer
,
N.
Jork
,
C.
Gu
,
S. B.
Shears
,
G.
Schaaf
,
B.
Kammerer
,
D.
Fiedler
,
A.
Saiardi
, and
H. J.
Jessen
, “
Analysis of inositol phosphate metabolism by capillary electrophoresis electrospray ionization mass spectrometry
,”
Nat. Commun.
11
,
6035
(
2020
).
6.
V. T.
Dau
,
T.-K.
Nguyen
, and
D. V.
Dao
, “
Charge reduced nanoparticles by sub-kHz ac electrohydrodynamic atomization toward drug delivery applications
,”
Appl. Phys. Lett.
116
,
023703
(
2020
).
7.
T.
Zhu
,
C.
Li
,
W.
Yang
,
X.
Zhao
,
X.
Wang
,
C.
Tang
,
B.
Mi
,
Z.
Gao
,
W.
Huang
, and
W.
Deng
, “
Electrospray dense suspensions of TiO2 nanoparticles for dye sensitized solar cells
,”
Aerosol Sci. Technol.
47
,
1302
1309
(
2013
).
8.
B.
Huand
and
B.
Liu
, “
Dye-sensitized solar cells fabricated by the TiO2 nanostructural materials synthesized by electrospray and hydrothermal post-treatment
,”
Appl. Surf. Sci.
358
,
412
417
(
2015
).
9.
J.
Wang
,
H.
Xu
,
Y.
Huo
,
Y.
Wang
, and
M.
Dong
, “
Progress of electrospray and electrospinning in energy applications
,”
Nanotechnology
31
,
132001
(
2020
).
10.
J.
Wang
,
C.
Li
,
D.
Chen
,
C.
Sun
, and
Z.
Yang
, “
Interlayered MoS2/rGO thin film for efficient lithium storage produced by electrospray deposition and far-infrared reduction
,”
Appl. Surf. Sci.
499
,
143940
(
2020
).
11.
I.
Fouzai
,
M.
Radaoui
,
S.
Díaz-Abad
,
M. A.
Rodrigo
, and
J.
Lobato
, “
Electrospray deposition of catalyst layers with ultralow Pt loading for cost-effective H2 production by SO2 electrolysis
,”
ACS Appl. Energy Mater.
5
,
2138
2149
(
2022
).
12.
D.
Zhang
,
X.
Yuan
,
C.
Gong
, and
X.
Zhang
, “
High electric field on water microdroplets catalyzes spontaneous and ultrafast oxidative C–H/N–H cross-coupling
,”
J. Am. Chem. Soc.
144
,
16184
16190
(
2022
).
13.
E.
Gil
,
J.
Arnó
,
J.
Llorens
,
R.
Sanz
,
J.
Llop
,
J. R.
Rosell-Polo
,
M.
Gallart
, and
A.
Escolà
, “
Advanced technologies for the improvement of spray application techniques in Spanish viticulture: An overview
,”
Sensors
14
,
691
708
(
2014
).
14.
N.
Chen
,
Y.
Gan
,
Y.
Luo
, and
Z.
Jiang
, “
A review on the technology development and fundamental research of electrospray combustion of liquid fuel at small-scale
,”
Fuel Process Technol.
234
,
107342
(
2022
).
15.
S.
Yang
,
Z.
Wang
,
Q.
Kong
, and
B.
Li
, “
Varicose-whipping instabilities transition of an electrified micro-jet in electrohydrodynamic cone-jet regime
,”
Int. J. Multiphase Flow
146
,
103851
(
2022
).
16.
Y.
Huo
,
J.
Wang
,
Z.
Zuo
, and
Y.
Fan
, “
Visualization of the evolution of charged droplet formation and jet transition in electrostatic atomization
,”
Phys. Fluids
27
,
114105
(
2015
).
17.
Z.
Wang
,
Q.
Wang
,
B.
Li
,
Y.
Zhang
,
J.
Wang
, and
J.
Tu
, “
An experimental investigation on cone-jet mode in electrohydrodynamic (EHD) atomization
,”
Exp. Therm. Fluid Sci.
114
,
110054
(
2020
).
18.
Z.
Jiang
,
Y.
Gan
,
Y.
Ju
,
J.
Liang
, and
Y.
Zhou
, “
Experimental study on the electrospray and combustion characteristics of biodiesel-ethanol blends in a meso-scale combustor
,”
Energy
179
,
843
849
(
2019
).
19.
H.
Xu
,
J.
Wang
,
J.
Tian
,
B.
Li
,
J.
Yao
,
L.
Zuo
,
Y.
Zhang
, and
T.
Zhao
, “
Electrohydrodynamic disintegration of dielectric fluid blended with ethanol
,”
Phys. Fluids
33
,
062107
(
2021
).
20.
M.
Rubio
,
S. H.
Sadek
,
A. M.
Gañán-Calvo
, and
J. M.
Montanero
, “
Diameter and charge of the first droplet emitted in electrospray
,”
Phys. Fluids
33
,
032002
(
2021
).
21.
P. L.
Wright
and
R. E.
Wirz
, “
Multiplexed electrospray emission on a porous wedge
,”
Phys. Fluids
33
,
012003
(
2021
).
22.
J.
Guerrero
,
A. J.
Hijano
,
M. A.
Lobato
,
F. J.
Higuera
,
I. G.
Loscertales
, and
A.
Fernandez-Nieves
, “
Emission modes in electro co-flow
,”
Phys. Fluids
31
,
082009
(
2019
).
23.
W.
Zhang
,
J.
Wang
,
Z.
Wang
,
B.
Li
,
K.
Yu
,
S.
Zhan
,
Y.
Huo
,
H.
Wang
, and
H.
Xu
, “
Review of bubble dynamics on charged liquid–gas flow
,”
Phys. Fluids
35
,
021302
(
2023
).
24.
F.
Li
,
S.
Ke
,
S.
Xu
,
X.
Yin
, and
X.
Yin
, “
Radial deformation and disintegration of an electrified liquid jet
,”
Phys. Fluids
32
,
021701
(
2020
).
25.
M.
Cloupeau
and
B.
Prunetfoch
, “
Electrostatic spraying of liquids: Main functioning modes
,”
J. Electrost.
25
,
165
184
(
1990
).
26.
A.
Jaworek
and
A.
Krupa
, “
Classification of the modes of EHD spraying
,”
J. Aerosol Sci.
30
,
873
893
(
1999
).
27.
A.
Gupta
,
B. K.
Mishra
, and
P. K.
Panigrahi
, “
Internal and external hydrodynamics of Taylor cone under constant and alternating voltage actuation
,”
Phys Fluids
33
,
117118
(
2021
).
28.
M.
Rubio
,
P.
Rodríguez-Díaz
,
J. M.
López-Herrera
,
M. A.
Herrada
,
A. M.
Gañán-Calvo
, and
J. M.
Montanero
, “
The role of charge relaxation in electrified tip streaming
,”
Phys Fluids
35
,
017131
(
2023
).
29.
J.
Fernández de La Mora
, “
The fluid dynamics of Taylor cones
,”
Annu. Rev. Fluid Mech.
39
,
217
243
(
2007
).
30.
M.
Cloupeauand
and
B.
Prunet-Foch
, “
Electrohydrodynamic spraying functioning modes: A critical review
,”
J. Aerosol Sci.
25
,
1021
1036
(
1994
).
31.
H.-H.
Kim
,
J.-H.
Kim
, and
A.
Ogata
, “
Time-resolved high-speed camera observation of electrospray
,”
J. Aerosol Sci.
42
,
249
263
(
2011
).
32.
A. M.
Gañán-Calvo
, “
The surface charge in electrospraying: Its nature and its universal scaling laws
,”
J. Aerosol Sci.
30
,
863
872
(
1999
).
33.
A.
Rajabi
,
E.
Javadi
,
S. R.
Pejman Sereshkeh
,
M. R.
Morad
,
A.
Kebriaee
,
H.
Nasiri
, and
S. A. A.
Razavi Haeri
, “
Experimental characterization of an extended electrohydrodynamic cone-jet with a hemispherical nozzle
,”
Phys. Fluids
30
,
114108
(
2018
).
34.
B. K.
Ku
and
S. S.
Kim
, “
Electrospray characteristics of highly viscous liquids
,”
J. Aerosol Sci.
33
,
1361
1378
(
2002
).
35.
M.
Cloupeau
and
B.
Prunet-Foch
, “
Electrostatic spraying of liquids in cone-jet mode
,”
J. Electrost.
22
,
135
159
(
1989
).
36.
D. P. H.
Smith
, “
The electrohydrodynamic atomization of liquids
,”
IEEE Trans. Ind. Appl.
IA-22
,
527
535
(
1986
).
37.
J. F.
De La Mora
and
I. G.
Loscertales
, “
The current emitted by highly conducting Taylor cones
,”
J. Fluid Mech.
260
,
155
184
(
1994
).
38.
A. M.
Gañán-Calvo
,
J.
Dávila
, and
A.
Barrero
, “
Current and droplet size in the electrospraying of liquids. Scaling laws
,”
J. Aerosol Sci.
28
,
249
275
(
1997
).
39.
R. P. A.
Hartman
,
D. J.
Brunner
,
D. M. A.
Camelot
,
J. C. M.
Marijnissen
, and
B.
Scarlett
, “
Jet break-up in electrohydrodynamic atomization in the cone-jet mode
,”
J. Aerosol Sci.
31
,
65
95
(
2000
).
40.
A.
Panahi
,
A. R.
Pishevar
, and
M. R.
Tavakoli
, “
Experimental investigation of electrohydrodynamic modes in electrospraying of viscoelastic polymeric solutions
,”
Phys. Fluids
32
,
012116
(
2020
).
41.
A.
Rubio
,
E. J.
Vega
,
A. M.
Gañán-Calvo
, and
J. M.
Montanero
, “
Unexpected stability of micrometer weakly viscoelastic jets
,”
Phys. Fluids
34
,
062014
(
2022
).
42.
M.
Xu
,
X.
Li
,
A.
Riseman
, and
J. M.
Frostad
, “
Quantifying the effect of extensional rheology on the retention of agricultural sprays
,”
Phys. Fluids
33
,
032107
(
2021
).
43.
J.-P.
Borra
, “
Review on water electro-sprays and applications of charged drops with focus on the corona-assisted cone-jet mode for high efficiency air filtration by wet electro-scrubbing of aerosols
,”
J. Aerosol Sci.
125
,
208
236
(
2018
).
44.
S.
Faraji
,
B.
Sadri
,
B.
Vajdi Hokmabad
,
N.
Jadidoleslam
, and
E.
Esmaeilzadeh
, “
Experimental study on the role of electrical conductivity in pulsating modes of electrospraying
,”
Exp. Therm. Fluid Sci.
81
,
327
335
(
2017
).
45.
B. M.
Marsh
,
K.
Iyer
, and
R. G.
Cooks
, “
Reaction acceleration in electrospray droplets: Size, distance, and surfactant effects
,”
J. Am. Soc. Mass Spectrom.
30
,
2022
2030
(
2019
).
46.
P. C.
DeLeo
,
C.
Huynh
,
M.
Pattanayek
,
K. C.
Schmid
, and
N.
Pechacek
, “
Assessment of ecological hazards and environmental fate of disinfectant quaternary ammonium compounds
,”
Ecotoxicol. Environ. Saf.
206
,
111116
(
2020
).
47.
Y.
Fan
,
N.
Hashimoto
,
H.
Nishida
, and
Y.
Ozawa
, “
Spray characterization of an air-assist pressure-swirl atomizer injecting high-viscosity Jatropha oils
,”
Fuel
121
,
271
283
(
2014
).
48.
M. W.
Mekonenand
and
N.
Sahoo
, “
Effect of fuel preheating with blended fuels and exhaust gas recirculation on diesel engine operating parameters
,”
Renewable Energy Focus
26
,
58
70
(
2018
).
49.
A. V.
Gorty
and
S. A.
Barringer
, “
Electrohydrodynamic spraying of chocolate
,”
J. Food Process. Preserv.
35
,
542
549
(
2011
).
50.
P. R.
Shah
and
A.
Ganesh
, “
Study the influence of pre-heating on atomization of straight vegetable oil through Ohnesorge number and Sauter mean diameter
,”
J. Energy Inst.
91
,
828
834
(
2018
).
51.
N.
Sharma
,
W. D.
Bachalo
, and
A. K.
Agarwal
, “
Spray droplet size distribution and droplet velocity measurements in a firing optical engine
,”
Phys. Fluids
32
,
023304
(
2020
).
52.
R. A.
Dafsari
,
H. J.
Lee
,
J.
Han
,
D.-C.
Park
, and
J.
Lee
, “
Viscosity effect on the pressure swirl atomization of an alternative aviation fuel
,”
Fuel
240
,
179
191
(
2019
).
53.
G.
Singh
,
P. X.
Pham
,
A.
Kourmatzis
, and
A. R.
Masri
, “
Effect of electric charge and temperature on the near-field atomization of diesel and biodiesel
,”
Fuel
241
,
941
953
(
2019
).
54.
X.
Suo
,
K.
Zhang
,
X.
Huang
,
D.
Wang
,
H.
Jia
,
F.
Yang
,
W.
Zhang
,
J.
Li
,
L.
Tu
, and
P.
Song
, “
Electrospray beam currents in the cone-jet mode based on numerical simulation
,”
Phys. Fluids
35
,
013603
(
2023
).
55.
R.
Coelho
and
J.
Debeau
, “
Properties of the tip-plane configuration
,”
J. Phys. D
4
,
1266
(
1971
).
56.
P. B.
Kowalczuk
and
J.
Drzymala
, “
Physical meaning of the Sauter mean diameter of spherical particulate matter
,”
Part. Sci. Technol.
34
,
645
647
(
2016
).
57.
J. A.
Bossard
and
R. E.
Peck
, “
Droplet sie distribution effects in spray combustion
,”
Symp. (Int.) Combust.
26
,
1671
1677
(
1996
).
58.
S.
Arrhenius
, “
Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte
,”
Z. Phys. Chem.
4U
,
96
116
(
1889
).
59.
Q.
Kong
,
S.
Yang
,
Q.
Wang
,
Z.
Wang
,
Q.
Dong
, and
J.
Wang
, “
Dynamics of electrified jets in electrohydrodynamic atomization
,”
Case Stud. Therm. Eng.
29
,
101725
(
2022
).
60.
Z.
Wang
,
L.
Xia
,
L.
Tian
,
J.
Wang
,
S.
Zhan
,
Y.
Huo
, and
J.
Tu
, “
Natural periodicity of electrohydrodynamic spraying in ethanol
,”
J. Aerosol Sci.
117
,
127
138
(
2018
).
61.
L.
Rayleigh
, “
On the instability of jets
,”
Proc. London Math. Soc.
s1-10
,
4
13
(
1878
).
You do not currently have access to this content.