A high-fidelity computational framework for predicting the interaction of a rocket plume with a dust blanket in an almost vacuum ambient that represents the descent/ascend phase of planetary landing is developed. Compared to the existing continuum frameworks, the developed tool benefits from nonlinear-coupled constitutive relationships obtained using a method of moments approach to tackle the non-equilibrium effects in the rarefied condition. The two-phase flow is modeled in an Eulerian framework that allows for the simulation of a wider range of solid regimes compared to the Lagrangian counterpart. Simulations were conducted to analyze the cratering phenomena and regolith ejecta dynamics. Moreover, the vorticity growth rates were analyzed using a new vorticity transport equation (VTE) by including the bulk viscosity and multiphase terms to demonstrate the contribution of each term to the formation of counterintuitive festooned patterns on the surface owing to jet impingement. This analysis identified a new contributing mechanism responsible for the scour patterns. Although all the investigated terms in the VTE contribute to such patterns, the viscous term has more effect during the entire investigation period. Furthermore, studies on particulate loading, particle diameter, and bed height were conducted to highlight the role of these parameters on brownout phenomena and scour formation patterns. The simulation results depict that the generated vortex core beneath the nozzle is highly dependent on the diameter of the particles as well as the bed height: an increase in the height of the bed and particle diameter can lead to a more favorable brownout status.

1.
K. H.
Lee
, “
Lunar orbiter trade study and conceptual design of onboard propulsion system
,”
J. Spacecr. Rockets
48
,
346
(
2011
).
2.
J.
Burt
and
I.
Boyd
, “
Development of a two-way coupled model for two phase rarefied flows
,” AIAA Paper No. 2004-1351,
2004
.
3.
S.
Gimelshein
,
A.
Alexeenko
,
D.
Wadsworth
, and
N.
Gimelshein
, “
The influence of particulates on thruster plume/shock layer interaction at high altitudes
,” AIAA Paper No. 2005-766,
2005
.
4.
J. E.
Lane
,
P. T.
Metzger
, and
C. D.
Immer
, “
Lagrangian trajectory modeling of lunar dust particles
,” in 11th Biennial ASCE Aerospace Division International Conference on Engineering,
Construction and Operations in Challenging Environments
,
Long Beach, CA
,
2008
.
5.
P.
Liever
,
A.
Tosh
,
R.
Arslanbekov
, and
S.
Habchi
, “
Modeling of rocket plume impingement flow and debris transport in lunar environment
,” AIAA Paper No. 2012-0800,
2012
.
6.
X.
He
,
B.
He
, and
G.
Cai
, “
Simulation of rocket plume and lunar dust using DSMC method
,”
Acta Astronaut.
70
,
100
(
2012
).
7.
A. B.
Morris
, “
Simulation of rocket plume impingement and dust dispersal on the lunar surface
,” Ph.D. dissertation (
The University of Texas at Austin
,
2012
).
8.
A. B.
Morris
,
D. B.
Goldstein
,
P. L.
Varghese
, and
L. M.
Trafton
, “
Approach for modeling rocket plume impingement and dust dispersal on the moon
,”
J. Spacecr. Rockets
52
,
362
(
2015
).
9.
Y.
Li
,
D.
Ren
,
Z.
Bo
,
W.
Huang
,
Q.
Ye
, and
Y.
Cui
, “
Gas-particle two-way coupled method for simulating the interaction between a rocket plume and lunar dust
,”
Acta Astronaut.
157
,
123
(
2019
).
10.
A.
Rahimi
,
O.
Ejtehadi
,
K. H.
Lee
, and
R. S.
Myong
, “
Near-field plume-surface interaction and regolith erosion and dispersal during the lunar landing
,”
Acta Astronaut.
175
,
308
(
2020
).
11.
A. K.
Chinnappan
,
R.
Kumar
, and
V. K.
Arghode
, “
Modeling of dusty gas flows due to plume impingement on a lunar surface
,”
Phys. Fluids
33
,
053307
(
2021
).
12.
D.
Fontes
,
J. G.
Mantovani
, and
P.
Metzger
, “
Numerical estimations of lunar regolith trajectories and damage potential due to rocket plumes
,”
Acta Astronaut.
195
,
169
(
2022
).
13.
J. E.
Vesper
,
T. J. M.
Broeders
,
J.
Batenburg
,
D. E. A.
van Odyck
, and
C. R.
Kleijn
, “
The interaction of parallel and inclined planar rarefied sonic plumes—From free molecular to continuum regime
,”
Phys. Fluids
33
,
086103
(
2021
).
14.
A.
Capone
,
G.
Moscato
, and
G.
Romano
, “
Role of density ratio on particle dispersion in a turbulent jet
,”
Phys. Fluids
35
,
013332
(
2023
).
15.
M.
Fathi
,
S.
Hickel
, and
D.
Roekaerts
, “
Large eddy simulations of reacting and non-reacting transcritical fuel sprays using multiphase thermodynamics
,”
Phys. Fluids
34
,
085131
(
2022
).
16.
O.
Ejtehadi
and
R. S.
Myong
, “
A modal discontinuous Galerkin method for simulating dusty and granular gas flows in thermal non-equilibrium in the Eulerian framework
,”
J. Comput. Phys.
411
,
109410
(
2020
).
17.
K.
Balakrishnan
and
J.
Bellan
, “
High-fidelity modeling and numerical simulation of cratering induced by the interaction of a supersonic jet with a granular bed of solid particles
,”
Int. J. Multiphase Flow
99
,
1
29
(
2018
).
19.
R.
Scott
and
H. Y.
Ko
, “
Transient rocket-engine gas flow in soil
,”
AIAA J.
6
,
258
(
1968
).
20.
O.
Ejtehadi
,
T.
Mankodi
,
I.
Sohn
,
R. S.
Myong
, and
B. J.
Kim
, “
Investigation of the non-equilibrium two-phase flow of gas and particles in a microscale shock tube and jet impingement on a permeable surface
” (unpublished).
21.
O.
Ejtehadi
,
A.
Rahimi
,
A.
Karchani
, and
R.
Myong
, “
Complex wave patterns in dilute gas–particle flows based on a novel discontinuous Galerkin scheme
,”
Int. J. Multiphase Flow
104
,
125
(
2018
).
22.
O.
Ejtehadi
,
A.
Rahimi
, and
R. S.
Myong
, “
Numerical investigation of the counter-intuitive behavior of Mach disk movement in underexpanded gas-particle jets
,”
J. Comput. Fluid Eng.
24
,
19
(
2019
).
23.
O.
Ejtehadi
and
R. S.
Myong
, “
Eulerian-Eulerian simulation of dusty gas flows past a prism from subsonic to supersonic regimes using a modal discontinuous Galerkin method
,”
Comput. Fluids
218
,
104841
(
2021
).
24.
O.
Ejtehadi
,
A.
Rahimi
, and
R. S.
Myong
, “
Investigation of a trifold interaction mechanism of shock, vortex, and dust using a DG method in a two-fluid model framework
,”
Powder Technol.
374
,
121
(
2020
).
25.
O.
Ejtehadi
,
E.
Mahravan
, and
I.
Sohn
, “
Investigation of shock and a dust cloud interaction in Eulerian framework using a newly developed OpenFOAM solver
,”
Int. J. Multiphase Flow
145
,
103812
(
2021
).
26.
C.
Lun
,
S. B.
Savage
,
D.
Jeffrey
, and
N.
Chepurniy
, “
Kinetic theories for granular flow: Inelastic particles in Couette flow and slightly inelastic particles in a general flowfield
,”
J. Fluid Mech.
140
,
223
(
1984
).
27.
M.
Reeks
, “
On the constitutive relations for dispersed particles in nonuniform flows—I: Dispersion in a simple shear flow
,”
Phys. Fluids A
5
,
750
(
1993
).
28.
D.
Gidaspow
,
Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions
(
Academic Press
,
1994
).
29.
A.
Busch
and
S. T.
Johansen
, “
On the validity of the two-fluid-KTGF approach for dense gravity-driven granular flows
,”
Powder Technol.
364
,
429
456
(
2020
).
30.
C.
Curtiss
, “
The classical Boltzmann equation of a gas of diatomic molecules
,”
J. Chem. Phys.
75
,
376
(
1981
).
31.
R. S.
Myong
, “
A computational method for Eu's generalized hydrodynamic equations of rarefied and microscale gasdynamics
,”
J. Comput. Phys.
168
,
47
(
2001
).
32.
R. S.
Myong
, “
Coupled nonlinear constitutive models for rarefied and microscale gas flows: Subtle interplay of kinematics and dissipation effects
,”
Continuum Mech. Thermodyn.
21
,
389
(
2009
).
33.
R. S.
Myong
, “
On the high Mach number shock structure singularity caused by overreach of Maxwellian molecules
,”
Phys. Fluids
26
,
056102
(
2014
).
34.
B. C.
Eu
,
Kinetic Theory and Irreversible Thermodynamics
(
John Wiley and Sons, Inc.
,
1992
).
35.
B. C.
Eu
and
Y. G.
Ohr
, “
Generalized hydrodynamics, bulk viscosity, and sound wave absorption and dispersion in dilute rigid molecular gases
,”
Phys. Fluids
13
,
744
(
2001
).
36.
L.
Onsager
, “
Reciprocal relations in irreversible processes—I
,”
Phys. Rev.
37
,
405
(
1931
).
37.
H.
Xiao
,
R. S.
Myong
, and
S.
Singh
, “
A new near-equilibrium breakdown parameter based on the Rayleigh-Onsager dissipation function
,”
AIP Conf. Proc.
1628
,
527
(
2014
).
38.
R. S.
Myong
, “
A generalized hydrodynamic computational model for rarefied and microscale diatomic gas flows
,”
J. Comput. Phys.
195
,
655
(
2004
).
39.
R. S.
Myong
,
Numerical Simulation of Hypersonic Rarefied Flows Using the Second-Order Constitutive Model of the Boltzmann Equation
(
InTech
,
2018
).
40.
S.
Singh
,
M.
Battiato
, and
R. S.
Myong
, “
Impact of bulk viscosity on flow morphology of shock-accelerated cylindrical light bubble in diatomic and polyatomic gases
,”
Phys. Fluids
33
,
066103
(
2021
).
41.
A.
Koop
, “
Numerical simulation of unsteady three-dimensional sheet cavitation
,” Ph.D. thesis (
University of Twente
,
2008
).
42.
T. J.
Barth
and
D. C.
Jespersen
,
The Design and Application of Upwind Schemes on Unstructured Meshes
(
American Institute of Aeronautics and Astronautics
,
1989
).
43.
K. G.
Powell
,
P. L.
Roe
,
R. S.
Myong
, and
T.
Gombosi
, “
An upwind scheme for magnetohydrodynamics
,” AIAA Paper No. 95-1704-CP,
1995
).
44.
K. G.
Powell
,
P. L.
Roe
,
T. J.
Linde
,
T. I.
Gombosi
, and
D. L.
De Zeeuw
, “
A solution-adaptive upwind scheme for ideal magnetohydrodynamics
,”
J. Comput. Phys.
154
,
284
(
1999
).
45.
P.
Janhunen
, “
A positive conservative method for magnetohydrodynamics based on HLL and Roe methods
,”
J. Comput. Phys.
160
,
649
(
2000
).
46.
S.
Jung
and
R.
Myong
, “
A second-order positivity-preserving finite volume upwind scheme for air-mixed droplet flow in atmospheric icing
,”
Comput. Fluids
86
,
459
(
2013
).
47.
T.
Chourushi
,
A.
Rahimi
,
S.
Singh
,
O.
Ejtehadi
,
T. K.
Mankodi
, and
R. S.
Myong
, “
Thermal and flow characteristics of nonequilibrium monatomic, diatomic, and polyatomic gases in cylindrical Couette flow based on second-order non-Navier–Fourier constitutive model
,”
Int. J. Heat Mass Transfer
187
,
122580
(
2022
).
48.
S.
Singh
,
A.
Karchani
,
T.
Chourushi
, and
R. S.
Myong
, “
A three-dimensional modal discontinuous Galerkin method for the second-order Boltzmann-Curtiss-based constitutive model of rarefied and microscale gas flows
,”
J. Comput. Phys.
457
,
111052
(
2022
).
49.
T. K.
Mankodi
,
O.
Ejtehadi
,
T.
Chourushi
,
A.
Rahimi
, and
R. S.
Myong
, “
nccrFOAM suite: Nonlinear coupled constitutive relation solver in OpenFOAM framework for rarefied and microscale gas flows with vibrational non-equilibrium
” (unpublished).
50.
C. T.
Crowe
,
Multiphase Flow Handbook
(
CRC Press
,
2005
).
51.
S.
Stefanov
,
E.
Roohi
, and
A.
Shoja-Sani
, “
A novel transient-adaptive subcell algorithm with a hybrid application of different collision techniques in direct simulation Monte Carlo (DSMC)
,”
Phys. Fluids
34
,
092003
(
2022
).
52.
R. S.
Myong
,
A.
Karchani
, and
O.
Ejtehadi
, “
A review and perspective on a convergence analysis of the direct simulation Monte Carlo and solution verification
,”
Phys. Fluids
31
,
066101
(
2019
).

Supplementary Material

You do not currently have access to this content.