Direct simulations of phase-change and phase-ordering phenomena are becoming more common. Recently, qualitative simulations of boiling phenomena have been undertaken by a large number of research groups. One seldom discussed limitation is that large values of gravitational forcing are required to simulate the detachment and rise of bubbles formed at the bottom surface. The forces are typically so large that neglecting the effects of varying pressure in the system becomes questionable. In this paper, we examine the effect of large pressure variations induced by gravity using pseudopotential lattice Boltzmann simulations. These pressure variations lead to height dependent conditions for phase coexistence and nucleation of either gas or liquid domains. Because these effects have not previously been studied in the context of these simulation methods, we focus here on the phase stability in a one-dimensional system, rather than the additional complexity of bubble or droplet dynamics. Even in this simple case, we find that the different forms of gravitational forces employed in the literature lead to qualitatively different phenomena, leading to the conclusion that the effects of gravity induced pressure variations on phase-change phenomena should be very carefully considered when trying to advance boiling and cavitation as well as liquefaction simulations to become quantitative tools.

1.
V. P.
Carey
,
Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment
(
CRC Press
,
2020
).
2.
Y. Y.
Jiang
,
H.
Osada
,
M.
Inagaki
, and
N.
Horinouchi
, “
Dynamic modeling on bubble growth, detachment and heat transfer for hybrid-scheme computations of nucleate boiling
,”
Int. J. Heat Mass Transfer
56
,
640
652
(
2013
).
3.
A.
Chau Pattnaik
,
R.
Samanta
, and
H.
Chattopadhyay
, “
A brief on the application of multiphase lattice Boltzmann method for boiling and evaporation
,”
J. Therm. Anal. Calorim.
148
,
2869
(
2023
).
4.
L.
Chen
,
Q.
Kang
,
Y.
Mu
,
Y.-L.
He
, and
W.-Q.
Tao
, “
A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications
,”
Int. J. Heat Mass Transfer
76
,
210
236
(
2014
).
5.
Q.
Li
,
K. H.
Luo
,
Q.
Kang
,
Y.
He
,
Q.
Chen
, and
Q.
Liu
, “
Lattice Boltzmann methods for multiphase flow and phase-change heat transfer
,”
Prog. Energy Combust. Sci.
52
,
62
105
(
2016
).
6.
L.
Czelusniak
,
V.
Mapelli
,
M.
Guzella
,
L.
Cabezas-Gómez
, and
A. J.
Wagner
, “
Force approach for the pseudopotential lattice Boltzmann method
,”
Phys. Rev. E
102
,
033307
(
2020
).
7.
S.-R.
Gao
,
J.-X.
Jin
,
B.-J.
Wei
,
D.-J.
Lin
,
X.
Wang
,
L.-Z.
Zhang
,
Y.-R.
Yang
, and
X.-D.
Wang
, “
Dynamic behaviors of two droplets impacting an inclined superhydrophobic substrate
,”
Colloids Surf., A
623
,
126725
(
2021
).
8.
J.
Huang
,
L.
Wang
, and
K.
He
, “
Three-dimensional study of double droplets impact on a wettability-patterned surface
,”
Comput. Fluids
248
,
105669
(
2022
).
9.
Y.
Xu
,
L.
Tian
,
C.
Zhu
, and
N.
Zhao
, “
Impact and boiling characteristics of a droplet on heated surfaces: A 3D lattice Boltzmann study
,”
Appl. Therm. Eng.
219
,
119360
(
2023
).
10.
S.
Lu
,
H.
Lu
,
L.
Hu
, and
X.
Wang
, “
A numerical investigation of droplet bouncing behaviors on the superhydrophobic surfaces with different micro-structures
,”
Case Stud. Therm. Eng.
43
,
102728
(
2023
).
11.
H.
Wang
,
Q.
Lou
, and
L.
Li
, “
Mesoscale simulations of saturated flow boiling heat transfer in a horizontal microchannel
,”
Numer. Heat Transfer, Part A
78
,
107
124
(
2020
).
12.
M. d S.
Guzella
,
L. E.
Czelusniak
,
V. P.
Mapelli
,
P. F.
Alvariño
,
G.
Ribatski
, and
L.
Cabezas-Gómez
, “
Simulation of boiling heat transfer at different reduced temperatures with an improved pseudopotential lattice Boltzmann method
,”
Symmetry
12
,
1358
(
2020
).
13.
W.
Li
,
Q.
Li
,
Y.
Yu
, and
K. H.
Luo
, “
Nucleate boiling enhancement by structured surfaces with distributed wettability-modified regions: A lattice Boltzmann study
,”
Appl. Therm. Eng.
194
,
117130
(
2021
).
14.
C.
Zhang
,
L.
Chen
,
W.
Ji
,
Y.
Liu
,
L.
Liu
, and
W.-Q.
Tao
, “
Lattice Boltzmann mesoscopic modeling of flow boiling heat transfer processes in a microchannel
,”
Appl. Therm. Eng.
197
,
117369
(
2021
).
15.
A.
Jaramillo
,
V.
Pessoa Mapelli
, and
L.
Cabezas-Gómez
, “
Pseudopotential lattice Boltzmann method for boiling heat transfer: A mesh refinement procedure
,”
Appl. Therm. Eng.
213
,
118705
(
2022
).
16.
A. V.
Fedoseev
,
M. V.
Salnikov
,
A. E.
Ostapchenko
, and
A. S.
Surtaev
, “
Lattice Boltzmann simulation of optimal biphilic surface configuration to enhance boiling heat transfer
,”
Energies
15
,
8204
(
2022
).
17.
E.
Ezzatneshan
,
A.
Salehi
, and
H.
Vaseghnia
, “
Study of micro-heater shape and wettability effects on inception of boiling phenomenon using a multiphase lattice Boltzmann method
,”
Int. J. Therm. Sci.
184
,
107913
(
2023
).
18.
J.
Wang
,
G.
Liang
,
X.
Yin
, and
S.
Shen
, “
Pool boiling on micro-structured surface with lattice Boltzmann method
,”
Int. J. Therm. Sci.
187
,
108170
(
2023
).
19.
Q.
Li
,
Y.
Yu
, and
Z.
Wen
, “
How does boiling occur in lattice Boltzmann simulations?
,”
Phys. Fluids
32
,
093306
(
2020
).
20.
Q.
Li
,
Q.
Kang
,
M. M.
Francois
,
Y.
He
, and
K.
Luo
, “
Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability
,”
Int. J. Heat Mass Transfer
85
,
787
796
(
2015
).
21.
L.
Fei
,
J.
Yang
,
Y.
Chen
,
H.
Mo
, and
K. H.
Luo
, “
Mesoscopic simulation of three-dimensional pool boiling based on a phase-change cascaded lattice Boltzmann method
,”
Phys. Fluids
32
,
103312
(
2020
).
22.
Y.
Feng
,
F.
Chang
,
Z.
Hu
,
H.
Li
, and
J.
Zhao
, “
Investigation of pool boiling heat transfer on hydrophilic-hydrophobic mixed surface with micro-pillars using lbm
,”
Int. J. Therm. Sci.
163
,
106814
(
2021
).
23.
L.
Gao
,
M.
Bai
,
J.
Lv
,
Y.
Li
,
X.
Lv
,
X.
Liu
, and
Y.
Li
, “
Experimental studies for the combined effects of micro-cavity and surface wettability on saturated pool boiling
,”
Exp. Therm. Fluid Sci.
140
,
110769
(
2023
).
24.
S.
Gong
and
P.
Cheng
, “
Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling
,”
Int. J. Heat Mass Transfer
64
,
122
132
(
2013
).
25.
K.
Sankaranarayanan
,
X.
Shan
,
I.
Kevrekidis
, and
S.
Sundaresan
, “
Bubble flow simulations with the lattice Boltzmann method
,”
Chem. Eng. Sci.
54
,
4817
4823
(
1999
).
26.
A.
Wagner
,
L.
Giraud
, and
C.
Scott
, “
Simulation of a cusped bubble rising in a viscoelastic fluid with a new numerical method
,”
Comput. Phys. Commun.
129
,
227
232
(
2000
).
27.
B.
Bunner
and
G.
Tryggvason
, “
Dynamics of homogeneous bubbly flows part 1. rise velocity and microstructure of the bubbles
,”
J. Fluid Mech.
466
,
17
52
(
2002
).
28.
A.
Márkus
and
G.
Házi
, “
Simulation of evaporation by an extension of the pseudopotential lattice Boltzmann method: A quantitative analysis
,”
Phys. Rev. E
83
,
046705
(
2011
).
29.
N.
Takada
,
M.
Misawa
,
A.
Tomiyama
, and
S.
Fujiwara
, “
Numerical simulation of two-and three-dimensional two-phase fluid motion by lattice Boltzmann method
,”
Comput. Phys. Commun.
129
,
233
246
(
2000
).
30.
M. R.
Swift
,
E.
Orlandini
,
W.
Osborn
, and
J.
Yeomans
, “
Lattice Boltzmann simulations of liquid-gas and binary fluid systems
,”
Phys. Rev. E
54
,
5041
(
1996
).
31.
L.
Amaya-Bower
and
T.
Lee
, “
Single bubble rising dynamics for moderate Reynolds number using lattice Boltzmann method
,”
Comput. Fluids
39
,
1191
1207
(
2010
).
32.
P.
Lallemand
and
L.-S.
Luo
, “
Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability
,”
Phys. Rev. E
61
,
6546
(
2000
).
33.
T.
Krüger
,
H.
Kusumaatmaja
,
A.
Kuzmin
,
O.
Shardt
,
G.
Silva
, and
E. M.
Viggen
, “
The lattice Boltzmann method
,”
Springer Int. Publ.
10
,
978
(
2017
).
34.
E.
Ezzatneshan
,
A.
Salehi
, and
H.
Vaseghnia
, “
Study on forcing schemes in the thermal lattice Boltzmann method for simulation of natural convection flow problems
,”
Heat Transfer
50
,
7604
7631
(
2021
).
35.
Q.
Li
,
K. H.
Luo
,
X.
Li
et al, “
Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows
,”
Phys. Rev. E
86
,
016709
(
2012
).
36.
Q.
Li
,
K.
Luo
, and
X.
Li
, “
Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model
,”
Phys. Rev. E
87
,
053301
(
2013
).
37.
Y.-H.
Qian
,
D.
d'Humières
, and
P.
Lallemand
, “
Lattice BGK models for Navier-Stokes equation
,”
Europhys. Lett.
17
,
479
(
1992
).
38.
X.
Shan
and
H.
Chen
, “
Lattice Boltzmann model for simulating flows with multiple phases and components
,”
Phys. Rev. E
47
,
1815
(
1993
).
39.
X.
Shan
, “
Pressure tensor calculation in a class of nonideal gas lattice Boltzmann models
,”
Phys. Rev. E
77
,
066702
(
2008
).
40.
P.
Yuan
and
L.
Schaefer
, “
Equations of state in a lattice Boltzmann model
,”
Phys. Fluids
18
,
042101
(
2006
).
41.
D.
Lycett-Brown
and
K. H.
Luo
, “
Improved forcing scheme in pseudopotential lattice Boltzmann methods for multiphase flow at arbitrarily high density ratios
,”
Phys. Rev. E
91
,
023305
(
2015
).
42.
Q.
Zou
and
X.
He
, “
On pressure and velocity boundary conditions for the lattice Boltzmann BGK model
,”
Phys. Fluids
9
,
1591
1598
(
1997
).
43.
G.
Hazi
and
A.
Markus
, “
On the bubble departure diameter and release frequency based on numerical simulation results
,”
Int. J. Heat Mass Transfer
52
,
1472
1480
(
2009
).
44.
T.
Lee
and
C.-L.
Lin
, “
A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio
,”
J. Comput. Phys.
206
,
16
47
(
2005
).
45.
L. E.
Czelusniak
,
V. P.
Mapelli
,
A. J.
Wagner
, and
L.
Cabezas-Gómez
, “
Shaping the equation of state to improve numerical accuracy and stability of the pseudopotential lattice Boltzmann method
,”
Phys. Rev. E
105
,
015303
(
2022
).
46.
M. J.
Moran
,
H. N.
Shapiro
,
D. D.
Boettner
, and
M. B.
Bailey
,
Fundamentals of Engineering Thermodynamics
(
John Wiley & Sons
,
2010
).
47.
E.
Foard
and
A.
Wagner
, “
Enslaved phase-separation fronts in one-dimensional binary mixtures
,”
Phys. Rev. E
79
,
056710
(
2009
).
You do not currently have access to this content.