The keyhole arc welding technique has the advantage of improving welding efficiency by utilizing a stable keyhole mode. Accurate understanding of the keyhole effect is necessary to enhance the welding quality. Due to the high temperature and strong arc force involved, the complex gas–liquid–solid interactions in the complete keyhole process need to be explored. In order to fully demonstrate open keyhole mode welding, a three-tier sandwiched model based on multiphysics and multiphase effects was developed. The top layer of the model is filled with plasma arc, which gradually fuses and penetrates through the middle metal layer. Finally, it enters the third layer, resulting in an open keyhole mode. Multiphysics phenomena due to the plasma arc are fully included in the model, and the gas–liquid–solid interactions are calculated by combining the Volume of Fluid technique and the Enthalpy-porous technique. Arc ignition and dynamic open keyhole effect are demonstrated, and an arc discharge is shown from the open keyhole exit. The arc reflection phenomenon is observed as the arc is blocked by the weld pool frontier. The electric current path varies with the welding movement, and most of the current comes from the weld pool frontier. An experiment was conducted to obtain weld pool and keyhole images, which basically agree with the calculated results. Additionally, the calculated open keyhole time and electric potential drops also coincide well with experimental data.

1.
Y.
Li
,
C.
Su
, and
J. J.
Zhu
, “
Comprehensive review of wire arc additive manufacturing: Hardware system, physical process, monitoring, property characterization, application and future prospects
,”
Results Eng.
13
,
100330
(
2022
).
2.
C. B.
Jia
,
X. F.
Liu
,
G. K.
Zhang
,
Y.
Zhang
,
C. H.
Yu
, and
C. S.
Wu
, “
Penetration/keyhole status prediction and model visualization based on deep learning algorithm in plasma arc welding
,”
Int. J. Adv. Manuf. Technol.
117
,
3577
3597
(
2021
).
3.
Y. X.
Cui
,
Y. H.
Shi
,
Q.
Ning
,
Y. K.
Chen
, and
B. R.
Zhang
, “
Investigation into keyhole-weld pool dynamic behaviors based on HDR vision sensing of real-time K-TIG welding process through a steel/glass sandwich
,”
Adv. Manuf.
9
,
136
144
(
2021
).
4.
Y.
Liu
and
Z. M.
Liu
, “
Correlation of reflected plasma angle and weld pool thermal state in plasma arc welding process
,”
J. Manuf. Processes
75
,
1111
1122
(
2022
).
5.
W.
Wang
,
S.
Yamane
,
Q.
Wang
,
L.
Shan
,
J.
Sun
,
Z.
Wei
et al, “
Visual sensing and controlling of the keyhole in robotic plasma arc welding
,”
Int. J. Adv. Manuf. Technol.
121
,
1401
1414
(
2022
).
6.
C.
Zhang
,
C. S.
Wu
, and
S.
Tian
, “
Effect of ultrasonic vibration on current density and keyholing capability of plasma arc
,”
Sci. Technol. Weld. Joining
25
,
422
430
(
2020
).
7.
N. V.
Anh
,
S.
Tashiro
,
M.
Ngo
,
H.
Bui
, and
M.
Tanaka
, “
Experimental investigation on the weld pool formation process in plasma keyhole arc welding
,”
J. Phys. D
51
,
015204
(
2018
).
8.
N. V.
Anh
,
S.
Tashiro
,
M. H.
Ngo
,
H. V.
Bui
, and
M.
Tanaka
, “
Effect of the eddies formed inside a weld pool on welding defects during plasma keyhole arc welding
,”
J. Manuf. Processes
59
,
649
657
(
2020
).
9.
B.
Xu
,
S.
Chen
,
S.
Tashiro
,
F.
Jiang
,
V. A.
Nguyen
, and
M.
Tanaka
, “
Material flow analyses of high-efficiency joint process in VPPA keyhole flat welding by X-ray transmission system
,”
J. Cleaner Prod.
250
,
119450
(
2020
).
10.
B.
Xu
,
S.
Chen
,
S.
Tashiro
,
F.
Jiang
, and
M.
Tanaka
, “
Physical mechanism of material flow in variable polarity plasma arc keyhole welding revealed by in situ x-ray imaging
,”
Phys. Fluids
33
,
017121
(
2021
).
11.
Y.
Li
,
Y.
Feng
,
X.
Zhang
, and
C.
Wu
, “
Energy propagation in plasma arc welding with keyhole tracking
,”
Energy
64
,
1044
1056
(
2014
).
12.
R. M.
Farias
,
P. R. F.
Teixeira
, and
L. O.
Vilarinho
, “
Variable profile heat source models for numerical simulations of arc welding processes
,”
Int. J. Therm. Sci.
179
,
107593
(
2022
).
13.
D.
Wu
,
A. V.
Nguyen
,
S.
Tashiro
,
X.
Hua
, and
M.
Tanaka
, “
Elucidation of the weld pool convection and keyhole formation mechanism in the keyhole plasma arc welding
,”
Int. J. Heat Mass Transfer
131
,
920
931
(
2019
).
14.
D.
Wu
,
S.
Tashiro
,
X.
Hua
, and
M.
Tanaka
, “
A novel electrode-arc-weld pool model for studying the keyhole formation in the keyhole plasma arc welding process
,”
J. Phys. D
52
,
165203
(
2019
).
15.
T. Q.
Li
,
L.
Chen
,
Y.
Zhang
,
X. M.
Yang
, and
Y. C.
Lei
, “
Metal flow of weld pool and keyhole evolution in gas focusing plasma arc welding
,”
Int. J. Heat Mass Transfer
150
,
119296
(
2020
).
16.
R. Q.
Lang
,
Y.
Han
,
X.
Bai
, and
X.
Bao
, “
Influence of the metal flow in the keyhole molten pool on the molten pool stability in continuous variable polarity plasma arc keyhole vertical-up welding
,”
J. Manuf. Processes
76
,
195
209
(
2022
).
17.
J. N.
Qiao
,
C. S.
Wu
, and
Y.
Li
, “
Numerical and experimental investigation of keyholing process in ultrasonic vibration assisted plasma arc welding
,”
J. Manuf. Processes
50
,
603
613
(
2020
).
18.
W.
Zhao
,
H.
Jin
,
X.
Du
,
J.
Chen
, and
Y.
Wei
, “
A 3D arc-droplet-molten pool integrated model of al alloy GMAW process: Heat transfer, fluid flow and the effect of external magnetic field
,”
Vacuum
202
,
111129
(
2022
).
19.
Z. X.
Jiao
,
Z. M.
Liu
, and
X. C.
Zhao
, “
Cathode-arc-anode behavior in cooling-induced cathode-focusing GTA system: A unified numerical model
,”
Int. J. Heat Mass Transfer
199
,
123484
(
2022
).
20.
X. X.
Wang
,
Y.
Luo
,
L.
Chi
, and
D.
Fan
, “
Numerical investigation of transport phenomena of arc plasma in argon-oxygen gas mixture
,”
Int. J. Heat Mass Transfer
154
,
119708
(
2020
).
21.
L.
Yan
,
Y.
Feng
,
Y.
Li
,
X.
Zhang
, and
C.
Wu
, “
Plasma arc and weld pool coupled modeling of transport phenomena in keyhole welding
,”
Int. J. Heat Mass Transfer
92
,
628
638
(
2016
).
22.
B.
Xu
,
F.
Jiang
,
S.
Chen
,
M.
Tanaka
,
S.
Tashiro
, and
N. V.
Anh
, “
Numerical analysis of plasma arc physical characteristics under additional constraint of keyhole
,”
Chin. Phys. B
27
,
034701
(
2018
).
23.
D.
Wu
,
S.
Tashiro
,
X.
Hua
, and
M.
Tanaka
, “
Analysis of the energy propagation in the keyhole plasma arc welding using a novel fully coupled plasma arc-keyhole-weld pool model
,”
Int. J. Heat Mass Transfer
141
,
604
614
(
2019
).
24.
X. X.
Jian
and
C. S.
Wu
, “
Numerical analysis of the coupled arc-weld pool keyhole behaviors in stationary plasma arc welding
,”
Int. J. Heat Mass Transfer
84
,
839
847
(
2015
).
25.
X. X.
Jian
,
C. S.
Wu
,
J. K.
Zhang
, and
J.
Chen
, “
A unified 3D model for an interaction mechanism of the plasma arc, weld pool and keyhole in plasma arc welding
,”
J. Phys. D
48
,
465504
(
2015
).
26.
J. J.
Pan
,
S. S.
Hu
,
L. J.
Yang
, and
S. J.
Chen
, “
Numerical analysis of the heat transfer and material flow during keyhole plasma arc welding using a fully coupled tungsten–plasma–anode model
,”
Acta Mater.
118
,
221
229
(
2016
).
27.
Y.
Li
,
C.
Su
,
X.
Zhou
, and
C.
Wu
, “
A more precise unified model to describe comprehensive multiphysics and multiphase phenomena in plasma arc welding
,”
J. Manuf. Processes
59
,
668
678
(
2020
).
28.
Y.
Li
,
C.
Su
,
L.
Wang
, and
C.
Wu
, “
An easy-to-use multi-physical model to predict weld pool geometry in keyhole plasma arc welding
,”
Results Eng.
14
,
100429
(
2022
).
29.
X.
Wang
,
Y.
Luo
,
G.
Wu
,
L.
Chi
, and
D.
Fan
, “
Numerical simulation of metal vapour behavior in double electrodes TIG welding
,”
Plasma Chem. Plasma Process.
38
,
1095
1114
(
2018
).
30.
W. D.
Bennon
and
F. P.
Incropera
, “
A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems—I: Model formulation
,”
Int. J. Heat Mass Transfer
30
,
2161
2170
(
1987
).
31.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
225
(
1981
).
32.
J. J.
Lowke
and
M.
Tanaka
, “
‘LTE-diffusion approximation’ for arc calculations
,”
J. Phys. D
39
,
3634
3638
(
2006
).
You do not currently have access to this content.