Cavitation erosion often occurs on the surface of many underwater applications, which can cause severe damage to materials and reduce their performance. Since the cause of erosion is the impact pressure induced by the collapse of an individual cavitation bubble near the wall, to make a better prediction and prevent the damage potential, in this paper, we carry out systematic investigations on the impact characteristics by direct numerical simulation using a vapor bubble model. The volume of fluid (VOF) method is adopted to capture the interface between the two phases. The numerical results show that pressure wave and jet are two primary inducements of the impacts on the wall. The reason for the pressure wave impacts is the pressure wave emission after the collapse of the bubble's main part. And the reason for the jet impact is the stagnation pressure in front of the jet. After a parametric study of the two impacts with respect to the initial radius, driving pressure, and stand-off distance, the predicting equations for the pressure wave impact and jet impact are proposed at γ ≥ 1.74. When γ < 1.74, the impact pattern becomes complex due to the arrival time of the two impacts and the collapse of the vapor fragments right on the wall.

1.
W.
Lauterborn
, “
Optische Kavitation
,”
Phys. J.
32
,
553
(
1976
).
2.
J. P.
Dear
and
J. E.
Field
, “
A study of the collapse of arrays of cavities
,”
J. Fluid Mech.
190
,
409
(
1988
).
3.
C. E.
Brennen
,
Cavitation and Bubble Dynamics
,
1st ed.
(
Cambridge University Press
,
2013
).
4.
T.
Du
,
Y.
Wang
,
L.
Liao
, and
C.
Huang
, “
A numerical model for the evolution of internal structure of cavitation cloud
,”
Phys. Fluids
28
,
077103
(
2016
).
5.
E.
Kadivar
,
M. V.
Timoshevskiy
,
M. Y.
Nichik
,
O.
el Moctar
,
T. E.
Schellin
, and
K. S.
Pervunin
, “
Control of unsteady partial cavitation and cloud cavitation in marine engineering and hydraulic systems
,”
Phys. Fluids
32
,
052108
(
2020
).
6.
A.
Peters
,
H.
Sagar
,
U.
Lantermann
, and
O.
el Moctar
, “
Numerical modelling and prediction of cavitation erosion
,”
Wear
338–339
,
189
(
2015
).
7.
S.
Park
,
H.
Yeo
, and
S.
Hyung Rhee
, “
Isothermal compressible flow solver for prediction of cavitation erosion
,”
Eng. Appl. Comput. Fluid Mech.
13
,
683
(
2019
).
8.
A.
Peters
and
O.
el Moctar
, “
Numerical assessment of cavitation-induced erosion using a multi-scale Euler–Lagrange method
,”
J. Fluid Mech.
894
,
A19
(
2020
).
9.
L.
Geng
,
D.
Zhang
,
J.
Chen
,
O.
De La Torre
, and
X.
Escaler
, “
Prediction of cavitation erosion with different erosion risk indicators
,”
Ocean Eng.
247
,
110633
(
2022
).
10.
M.
Kornfeld
and
L.
Suvorov
, “
On the destructive action of cavitation
,”
J. Appl. Phys.
15
,
495
(
1944
).
11.
G. M.
Abouna
and
A. G.
White
,
Current Status of Clinical Organ Transplantation
(
Springer Netherlands
,
Dordrecht
,
1984
).
12.
R.
Oguri
and
K.
Ando
, “
Cavitation bubble nucleation induced by shock-bubble interaction in a gelatin gel
,”
Phys. Fluids
30
,
051904
(
2018
).
13.
Y.
Wang
and
D. S.
Kohane
, “
External triggering and triggered targeting strategies for drug delivery
,”
Nat. Rev. Mater.
2
,
17020
(
2017
).
14.
S. P.
Wang
,
Q. X.
Wang
,
D. M.
Leppinen
,
A. M.
Zhang
, and
Y. L.
Liu
, “
Acoustic bubble dynamics in a microvessel surrounded by elastic material
,”
Phys. Fluids
30
,
012104
(
2018
).
15.
V.
Robles
,
E.
Gutierrez-Herrera
,
L. F.
Devia-Cruz
,
D.
Banks
,
S.
Camacho-Lopez
, and
G.
Aguilar
, “
Soft material perforation via double-bubble laser-induced cavitation microjets
,”
Phys. Fluids
32
,
042005
(
2020
).
16.
A. D.
Walmsley
,
W. R. E.
Laird
, and
A. R.
Williams
, “
Dental plaque removal by cavitational activity during ultrasonic scaling
,”
J. Clin. Periodontol.
15
,
539
(
1988
).
17.
C.-D.
Ohl
,
M.
Arora
,
R.
Dijkink
,
V.
Janve
, and
D.
Lohse
, “
Surface cleaning from laser-induced cavitation bubbles
,”
Appl. Phys. Lett.
89
,
074102
(
2006
).
18.
F.
Reuter
,
S.
Lauterborn
,
R.
Mettin
, and
W.
Lauterborn
, “
Flow fields and vortex dynamics of bubbles collapsing near a solid boundary
,”
Ultrason. Sonochem.
37
,
542
(
2017
).
19.
Q.
Zeng
,
H.
An
, and
C.-D.
Ohl
, “
Wall shear stress from jetting cavitation bubbles: Influence of the stand-off distance and liquid viscosity
,”
J. Fluid Mech.
932
,
A14
(
2022
).
20.
R.
Han
,
A.-M.
Zhang
,
S.
Tan
, and
S.
Li
, “
Interaction of cavitation bubbles with the interface of two immiscible fluids on multiple time scales
,”
J. Fluid Mech.
932
,
A8
(
2022
).
21.
Lord
Rayleigh
, “
On the pressure developed in a liquid during the collapse of a spherical cavity
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
34
,
94
(
1917
).
22.
M. S.
Plesset
and
A.
Prosperetti
, “
Bubble dynamics and cavitation
,”
Annu. Rev. Fluid Mech.
9
,
145
(
1977
).
23.
J. B.
Keller
and
M.
Miksis
, “
Bubble oscillations of large amplitude
,”
J. Acoust. Soc. Am.
68
,
628
(
1980
).
24.
L.
Zhang
,
J.
Zhang
, and
J.
Deng
, “
Numerical investigation on the collapse of a bubble cluster near a solid wall
,”
Phys. Rev. E
99
,
043108
(
2019
).
25.
E.
Goncalves da Silva
and
P.
Parnaudeau
, “
Numerical study of pressure loads generated by a shock-induced bubble collapse
,”
Phys. Fluids
33
,
113318
(
2021
).
26.
K. T.
Guo
,
D.
Zhao
, and
L. X.
Zhang
, “
Theoretical research on the motion of spherical bubbles with surface tension
,”
Acta Mech. Sin.
39
,
322341
(
2023
).
27.
S.
Zhang
,
A. M.
Zhang
,
S. P.
Wang
, and
J.
Cui
, “
Dynamic characteristics of large scale spark bubbles close to different boundaries
,”
Phys. Fluids
29
,
092107
(
2017
).
28.
G.
Huang
,
M.
Zhang
,
X.
Ma
,
Q.
Chang
,
C.
Zheng
, and
B.
Huang
, “
Dynamic behavior of a single bubble between the free surface and rigid wall
,”
Ultrason. Sonochem.
67
,
105147
(
2020
).
29.
W.
Lauterborn
and
H.
Bolle
, “
Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary
,”
J. Fluid Mech.
72
,
391
(
1975
).
30.
A.
Vogel
and
W.
Lauterborn
, “
Acoustic transient generation by laser‐produced cavitation bubbles near solid boundaries
,”
J. Acoust. Soc. Am.
84
,
719
(
1988
).
31.
A.
Vogel
and
W.
Lauterborn
, “
Time-resolved particle image velocimetry used in the investigation of cavitation bubble dynamics
,”
Appl. Opt.
27
,
1869
(
1988
).
32.
J.
Noack
and
A.
Vogel
, “
Single-shot spatially resolved characterization of laser-induced shock waves in water
,”
Appl. Opt.
37
,
4092
(
1998
).
33.
J.-C.
Isselin
,
A.-P.
Alloncle
, and
M.
Autric
, “
On laser induced single bubble near a solid boundary: Contribution to the understanding of erosion phenomena
,”
J. Appl. Phys.
84
,
5766
(
1998
).
34.
S. J.
Shaw
,
W. P.
Schiffers
,
T. P.
Gentry
, and
D. C.
Emmony
, “
The interaction of a laser-generated cavity with a solid boundary
,”
J. Acoust. Soc. Am.
107
,
3065
(
2000
).
35.
M.
Tinguely
,
K.
Ohtani
,
M.
Farhat
, and
T.
Sato
, “
Observation of the formation of multiple shock waves at the collapse of cavitation bubbles for improvement of energy convergence
,”
Energies
15
,
2305
(
2022
).
36.
S. R.
Gonzalez-Avila
,
F.
Denner
, and
C.-D.
Ohl
, “
The acoustic pressure generated by the cavitation bubble expansion and collapse near a rigid wall
,”
Phys. Fluids
33
,
032118
(
2021
).
37.
F.
Reuter
and
S. A.
Kaiser
, “
High-speed film-thickness measurements between a collapsing cavitation bubble and a solid surface with total internal reflection shadowmetry
,”
Phys. Fluids
31
,
097108
(
2019
).
38.
O.
Supponen
,
D.
Obreschkow
,
M.
Tinguely
,
P.
Kobel
,
N.
Dorsaz
, and
M.
Farhat
, “
Scaling laws for jets of single cavitation bubbles
,”
J. Fluid Mech.
802
,
263
(
2016
).
39.
O.
Supponen
,
D.
Obreschkow
,
P.
Kobel
,
M.
Tinguely
,
N.
Dorsaz
, and
M.
Farhat
, “
Shock waves from nonspherical cavitation bubbles
,”
Phys. Rev. Fluids
2
,
093601
(
2017
).
40.
M. S.
Plesset
and
R. B.
Chapman
, “
Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary
,”
J. Fluid Mech.
47
,
283
(
1971
).
41.
S.
Li
,
Y.
Li
, and
A.
Zhang
, “
Numerical analysis of the bubble jet impact on a rigid wall
,”
Appl. Ocean Res.
50
,
227
(
2015
).
42.
S.
Li
,
A.-M.
Zhang
,
R.
Han
, and
P.
Cui
, “
Experimental and numerical study of two underwater explosion bubbles: Coalescence, fragmentation and shock wave emission
,”
Ocean Eng.
190
,
106414
(
2019
).
43.
K.-H.
Kim
,
G.
Chahine
,
J.-P.
Franc
, and
A.
Karimi
,
Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction
(
Springer
Netherlands, Dordrecht
,
2014
).
44.
C.-T.
Hsiao
,
A.
Jayaprakash
,
A.
Kapahi
,
J.-K.
Choi
, and
G. L.
Chahine
, “
Modelling of material pitting from cavitation bubble collapse
,”
J. Fluid Mech.
755
,
142
(
2014
).
45.
A. K.
Kapila
,
R.
Menikoff
,
J. B.
Bdzil
,
S. F.
Son
, and
D. S.
Stewart
, “
Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations
,”
Phys. Fluids
13
,
3002
(
2001
).
46.
G.
Allaire
,
S.
Clerc
, and
S.
Kokh
, “
A five-equation model for the simulation of interfaces between compressible fluids
,”
J. Comput. Phys.
181
,
577
(
2002
).
47.
X.
Yang
,
C.
Liu
,
D.
Wan
, and
C.
Hu
, “
Numerical study of the shock wave and pressure induced by single bubble collapse near planar solid wall
,”
Phys. Fluids
33
,
073311
(
2021
).
48.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
(
1981
).
49.
J.
Zhang
,
L.
Zhang
, and
J.
Deng
, “
Numerical study of the collapse of multiple bubbles and the energy conversion during bubble collapse
,”
Water
11
,
247
(
2019
).
50.
M.
Koch
,
C.
Lechner
,
F.
Reuter
,
K.
Köhler
,
R.
Mettin
, and
W.
Lauterborn
, “
Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM
,”
Comput. Fluids
126
,
71
(
2016
).
51.
C.
Lechner
,
W.
Lauterborn
,
M.
Koch
, and
R.
Mettin
, “
Jet formation from bubbles near a solid boundary in a compressible liquid: Numerical study of distance dependence
,”
Phys. Rev. Fluids
5
,
093604
(
2020
).
52.
E.
Johnsen
and
T.
Colonius
, “
Shock-induced collapse of a gas bubble in shockwave lithotripsy
,”
J. Acoust. Soc. Am.
124
,
2011
(
2008
).
53.
E.
Johnsen
and
T.
Colonius
, “
Numerical simulations of non-spherical bubble collapse
,”
J. Fluid Mech.
629
,
231
(
2009
).
54.
W.
Lauterborn
,
C.
Lechner
,
M.
Koch
, and
R.
Mettin
, “
Bubble models and real bubbles: Rayleigh and energy-deposit cases in a Tait-compressible liquid
,”
IMA J. Appl. Math.
83
,
556
(
2018
).
55.
S.
Li
,
R.
Han
,
A. M.
Zhang
, and
Q. X.
Wang
, “
Analysis of pressure field generated by a collapsing bubble
,”
Ocean Eng.
117
,
22
(
2016
).
56.
J.
Zhang
, “
Effect of stand-off distance on ‘counterjet’ and high impact pressure by a numerical study of laser-induced cavitation bubble near a wall
,”
Int. J. Multiphase Flow
142
,
103706
(
2021
).
57.
V.-T.
Nguyen
,
T.-H.
Phan
,
T.-N.
Duy
,
D.-H.
Kim
, and
W.-G.
Park
, “
Modeling of the bubble collapse with water jets and pressure loads using a geometrical volume of fluid based simulation method
,”
Int. J. Multiphase Flow
152
,
104103
(
2022
).
58.
S.-Y.
Tong
,
S.
Zhang
,
S.-P.
Wang
, and
S.
Li
, “
Characteristics of the bubble-induced pressure, force, and impulse on a rigid wall
,”
Ocean Eng.
255
,
111484
(
2022
).
59.
S.
Li
,
Y.
Saade
,
D.
van der Meer
, and
D.
Lohse
, “
Comparison of boundary integral and volume-of-fluid methods for compressible bubble dynamics
,”
Int. J. Multiphase Flow
145
,
103834
(
2021
).
60.
T.
Trummler
,
S. J.
Schmidt
, and
N. A.
Adams
, “
Numerical investigation of non-condensable gas effect on vapor bubble collapse
,”
Phys. Fluids
33
,
096107
(
2021
).
61.
M.
Rattray
, “
Perturbation effects in cavitation bubble dynamics
,” Ph.D. thesis (
California Institute of Technology
,
1951
).
62.
T.
Trummler
,
S. J.
Schmidt
, and
N. A.
Adams
, “
Effect of stand-off distance and spatial resolution on the pressure impact of near-wall vapor bubble collapses
,”
Int. J. Multiphase Flow
141
,
103618
(
2021
).
63.
C.
Ohl
,
T.
Kurz
,
R.
Geisler
,
O.
Lindau
, and
W.
Lauterborn
, “
Bubble dynamics, shock waves and sonoluminescence
,”
Philos. Trans. R. Soc., London, Ser. A
357
,
269
(
1999
).
You do not currently have access to this content.