The study of the water entry of the projectile passing through the ice hole can solve the special issue of water entry under marine environmental constraints. We conducted experiments to validate the effect of the ice hole constraint on the dynamics of the water entry cavity and then used the numerical simulations to investigate the cavity dynamics of the projectile passing through ice holes with different sizes and rotation degrees. The results show that the ice hole affects the evolution of the water entry cavity and the motion state of the projectile. The splash crown flows back and then contacts the projectile surface when passing through the small-sized ice hole. Cavity collapses before the pinch-off. The splash crown flows back at the hole as the hole size increases, the cavity morphology is complete, and the projectile's movement is more stable at the initial stage of water entry and after deep cavity pinch-off. Special oblique jets form when passing through irregular holes. The impact of the oblique jet on the cavity increases as the rotation degree increases. The type of hole has little effect on the water entry dynamics of the projectile, but has a significant effect on the cavity morphology and the jet motion near the hole. The size of the hole has a great effect on the motion stability of the projectile.

1.
K. G.
Foote
, “
Pilot census of marine life in the Gulf of Maine: Contributions of technology
,”
Marineol. Acta
25
,
213
218
(
2003
).
2.
Y.
Liu
,
H.
Lu
,
Y.
Li
,
H.
Xu
,
Z.
Pan
,
P.
Dai
,
H.
Wang
, and
Q.
Yang
, “
A review of treatment technologies for produced water in offshore oil and gas fields
,”
Sci. Total Environ.
775
,
145485
(
2021
).
3.
T.
Acheampong
and
A. G.
Kemp
, “
Health, safety and environmental (HSE) regulation and outcomes in the offshore oil and gas industry: Performance review of trends in the United Kingdom Continental Shelf
,”
Saf. Sci.
148
,
105634
(
2022
).
4.
A.
Kapoor
,
G. S.
Fraser
, and
A.
Carter
, “
Marine conservation versus offshore oil and gas extraction: Reconciling an intensifying dilemma in Atlantic Canada
,”
Extr. Ind. Soc.
8
,
100978
(
2021
).
5.
A.
Crivellari
,
S.
Bonvicini
,
A.
Tugnoli
, and
V.
Cozzani
, “
Key performance indicators for environmental contamination caused by offshore oil spills
,”
Process Saf. Environ. Prot.
153
,
60
74
(
2021
).
6.
T.
Maki
,
H.
Horimoto
,
T.
Ishihara
, and
K.
Kofuji
, “
Autonomous tracking of sea turtles based on multibeam imaging sonar: Toward robotic observation of marine life
,”
IFAC PapersOnLine
52
(
21
),
86
90
(
2019
).
7.
M.
Judy
, “
Determining feeding events and prey encounter rates in a southern elephant seal: A method using swim speed and stomach temperature
,”
Mar. Mammal Sci.
24
,
207
217
(
2008
).
8.
T.
Iwata
,
K. Q.
Sakamoto
,
E. W. J.
Edwards
,
I. J.
Staniland
,
P. N.
Trathan
,
Y.
Goto
,
K.
Sato
,
Y.
Naito
, and
A.
Takahashi
, “
The influence of preceding dive cycles on the foraging decisions of Antarctic fur seals
,”
Biol. Lett.
11
,
20150227
(
2015
).
9.
D. P.
Alappattu
and
Q.
Wang
, “
Correction of depth bias in upper-marine temperature and salinity profiling measurements from airborne expendable probes
,”
J. Atmos. Oceanic Technol.
32
,
247
255
(
2015
).
10.
M. D.
Palmer
,
T.
Boyer
,
R.
Cowley
,
S.
Kizu
,
F.
Reseghettl
,
T.
Suzuki
, and
A.
Thresher
, “
An algorithm for classifying unknown expendable bathythermograph (XBT) instruments based on existing metadata
,”
J. Atmos. Oceanic Technol.
35
,
429
440
(
2018
).
11.
X.
Wang
,
S.
Li
,
X.
Long
,
C.
Lin
, and
Z.
Liu
, “
Ice-breaking performance sensitivity of the polar icebreaker to structure, control and ice parameters under different prediction models
,”
Mar. Eng.
236
,
109453
(
2021
).
12.
D.
Myland
and
S.
Ehlers
, “
Influence of bow design on ice breaking resistance
,”
Mar. Eng.
119
,
217
232
(
2016
).
13.
R.
Polach
and
S.
Ehlers
, “
Heave and pitch motions of a ship in model ice: An experimental study on ship resistance and ice breaking pattern
,”
Cold Regions Sci. Technol.
68
,
49
59
(
2011
).
14.
N.
Zhan
,
X.
Zheng
,
Q.
Ma
, and
Z.
Hu
, “
A numerical study on ice failure process and ice-ship interactions by smoothed particle hydrodynamics
,”
Int. J. Naval Archit. Mar. Eng.
11
,
796
808
(
2019
).
15.
C.
Chen
,
Y.
Liu
,
Y.
He
,
Z.
Chen
, and
G.
Zheng
, “
Numerical analysis of added resistance in head waves on a polar research vessel and conventional ships
,”
Mar. Eng.
233
,
108888
(
2021
).
16.
G.
Zhang
,
C.
You
,
H.
Wei
,
T.
Sun
, and
B.
Yang
, “
Experimental study on the effects of brash ice on the water-exit dynamics of an underwater vehicle
,”
Appl. Mar. Res.
117
,
102948
(
2021
).
17.
C.
You
,
T.
Sun
,
G.
Zhang
,
Y.
Wei
, and
Z.
Zong
, “
Numerical study on effect of brash ice on water exit dynamics of ventilated cavitation cylinder
,”
Mar. Eng.
245
,
110443
(
2022
).
18.
X. Y.
Hu
,
Y. J.
Wei
,
C.
Wang
,
L.
Yang
, and
J. X.
Lu
, “
Analysis of the cavity evolution law of the projectile passing through the underwater ice-hole
,”
Ocean Eng.
266
,
113164
(
2022
).
19.
Y.
Shi
,
Y.
Hua
, and
G.
Pan
, “
Experimental study on the trajectory of projectile water entry with asymmetric nose shape
,”
Phys. Fluids
32
,
122119
(
2020
).
20.
Q.
Zhang
,
Z.
Zong
,
T. Z.
Sun
,
Y. Q.
Yu
, and
H. T.
Li
, “
Characteristics of cavity collapse behind a high-speed projectile entering the water
,”
Phys. Fluids
33
,
062110
(
2021
).
21.
B.
Zhou
,
H.
Liu
,
Z. F.
Wu
,
X. S.
Han
,
T. Z.
Sun
, and
G. Y.
Zhang
, “
Numerical study of vertical water entry of cylinder under the influence of wind and current
,”
Phys. Fluids
33
,
033330
(
2021
).
22.
L.
Yang
,
Y. J.
Wei
,
C.
Wang
,
W. X.
Xia
,
J. C.
Li
,
Z. L.
Wang
, and
D. H.
Zhang
, “
Dynamics of the cavity evolution during vertical water entry of deformable spheres
,”
Phys. Fluids
33
,
065106
(
2021
).
23.
S. D.
Guleria
,
A.
Dhar
, and
D. V.
Patil
, “
Experimental insights on the water entry of hydrophobic sphere
,”
Phys. Fluids
33
,
102109
(
2021
).
24.
T. Z.
Sun
,
C. B.
Shi
,
G. Y.
Zhang
,
B.
Zhou
, and
H.
Wang
, “
Cavity dynamics of vertical water entry of a truncated cone–cylinder body with different angles of attack
,”
Phys. Fluids
33
,
055129
(
2021
).
25.
H.
Ren
and
X.
Zhao
, “
Numerical simulation for ice breaking and water entry of sphere
,”
Mar. Eng.
243
,
110198
(
2021
).
26.
H.
Wang
,
Y. C.
Luo
,
Z. H.
Chen
,
Z. Q.
Guo
, and
Z. G.
Huang
, “
Influences of ice-water mixture on the vertical water-entry of a cylinder at a low velocity
,”
Mar. Eng.
256
,
111464
(
2022
).
27.
H.
Wang
,
Z. G.
Huang
,
D.
Huang
,
Y.
Hou
,
Z. H.
Chen
,
Z. Q.
Guo
,
S.
Sun
, and
R. Y. X.
Xue
, “
Influences of floating ice on the vertical water entry process of a trans-media projectile at high speeds
,”
Mar. Eng.
265
,
112548
(
2022
).
28.
Z. T.
Guo
,
T.
Chen
,
Z. C.
Mu
, and
W.
Zhang
, “
An investigation into container constraint effects on the cavity characteristics due to high-speed projectile water entry
,”
Mar. Eng.
210
,
107449
(
2020
).
29.
Z. T.
Guo
,
T.
Chen
,
W.
Zhang
, and
Z. C.
Mu
, “
Cavity dynamics in hydrodynamic ram analysis of confined containers under ballistic impacts
,”
Mar. Eng.
218
,
108036
(
2020
).
30.
M. M.
Mansoor
,
J. O.
Marston1
,
I. U.
Vakarelski1
, and
S. T.
Thoroddsen
, “
Water entry without surface seal: Extended cavity formation
,”
J. Fluid Mech.
743
,
295
326
(
2014
).
31.
B.
Saranjam
, “
Experimental and numerical investigation of an unsteady supercavitating moving body
,”
Mar. Eng.
59
,
9
14
(
2013
).
32.
J. K.
Choi
,
B. K.
Ahn
, and
H. T.
Kim
, “
A numerical and experimental study on the drag of a cavitating underwater vehicle in cavitation tunnel
,”
J. Nav. Archit. Mar. Eng.
7
,
888
905
(
2015
).
33.
C. X.
Jiang
,
S. L.
Li
,
F. C.
Li
, and
W. Y.
Li
, “
Numerical study on axisymmetric ventilated supercavitation influenced by drag-reduction additives
,”
J. Nav. Archit. Mar. Eng.
115
,
62
76
(
2017
).
34.
B.
Ebrahimi
,
G.
He
,
Y.
Tang
,
M.
Franchek
,
D.
Liu
, and
J.
Pickett
, “
Characterization of high-pressure cavitating flow through a thick orifice plate in a pipe of constant cross section
,”
Int. J. Therm. Sci.
114
,
229
240
(
2017
).
35.
J.
Zhao
,
W.
Liu
,
J.
Zhao
, and
L.
Grekhov
, “
Numerical investigation of gas/liquid twophase flow in nozzle holes considering the fuel compressibility
,”
Int. J. Heat Mass Transfer
147
,
118991
(
2020
).
36.
T. Z.
Sun
,
J. Y.
Zhang
,
H. P.
Wei
,
D.
Zhang
, and
G. Y.
Zhang
, “
Experimental investigation of the influence of floating ices constraint on the cavity dynamics of an axisymmetric body during the water exit process
,”
Ocean Eng.
244
,
110383
(
2022
).
37.
J. O.
Marston
,
T. T.
Truscott
,
N. B.
Speirs
,
M. M.
Mansoor
, and
S. T.
Thoroddsen
, “
Crown sealing and buckling instability during water entry of spheres
,”
J. Fluid Mech.
794
,
506
529
(
2016
).
38.
J. M.
Aristoff
and
J. W. M.
Bush
, “
Water entry of small hydrophobic spheres
,”
J. Fluid Mech.
619
,
45
78
(
2009
).
You do not currently have access to this content.