The addition of an environmental remediation modifier—polymer solution—to a Newtonian fluid expands the distribution of remediation agents injected in situ into saturated aquifers (affecting plume velocity and deformation), enhancing remediation efficiency. However, the effect of the flow properties of the polymer solution on the macroscopic transverse dispersion remains poorly understood. In this work, a transparent thin-layer two-dimensional sandbox was constructed to simulate the aquifer, and the transverse distribution range of colored solute—permanganate solution and viscous shear-thinning fluid (permanganate solution + xanthan gum)—was captured in real-time by a camera device during transport in porous media. The boundary dispersion coefficient was obtained by fitting a breakthrough curve of the boundary concentration, while the overall plume dispersion coefficient was determined via image moment analysis. The effects of fluid rheology and heterogeneity on the transverse mixing of the plume were analyzed, and the mechanism of viscoelasticity-induced transverse dispersion and mixing enhancement was summarized. The results indicated that the anisotropic stress generated by polymer fluid deformation at high water velocity increased the fluctuation and transverse distribution of the plume, while higher-viscosity polymers increased the initial extrusion swelling and additional compressive stress, covering a larger area. Xanthan gum enhanced the transverse distribution of the plume mainly through initial injection-extrusion expansion effect, viscoelastic stability of the post-injection part, and streamline crossing attributed to elastic turbulence. This study also verified that the shear-thinning fluid enhanced the effect of transverse dispersion and mixing under heterogeneous conditions, providing insights applicable to groundwater remediation.

1.
A. I. A.
Chowdhury
,
J. I.
Gerhard
,
D.
Reynolds
,
B. E.
Sleep
, and
D. M.
O'Carroll
, “
Electrokinetic-enhanced permanganate delivery and remediation of contaminated low permeability porous media
,”
Water Res.
113
,
215
(
2017
).
2.
J. A. K.
Silva
,
M.
Crimi
,
T.
Palaia
,
S.
Ko
, and
S.
Davenport
, “
Field demonstration of polymer-amended in situ chemical oxidation (PA-ISCO)
,”
J. Contam. Hydrol.
199
,
36
(
2017
).
3.
H.
Suk
,
J. S.
Chen
,
E.
Park
,
W. S.
Han
, and
Y. H.
Kihm
, “
Numerical evaluation of the performance of injection/extraction well pair operation strategies with temporally variable injection/pumping rates
,”
J. Hydrol.
598
,
126494
(
2021
).
4.
M.
Boon
,
B.
Bijeljic
, and
S.
Krevor
, “
Observations of the impact of rock heterogeneity on solute spreading and mixing
,”
Water Resour. Res.
53
,
4624
, https://doi.org/10.1002/2016WR019912 (
2017
).
5.
A. J.
Valocchi
,
D.
Bolster
, and
C. J.
Werth
, “
Mixing-limited reactions in porous media
,”
Transp. Porous Med.
130
,
157
(
2019
).
6.
R. M.
Neupauer
,
L. J.
Sather
,
D. C.
Mays
,
J. P.
Crimaldi
, and
E. J.
Roth
, “
Contributions of pore-scale mixing and mechanical dispersion to reaction during active spreading by radial groundwater flow
,”
Water Resour. Res.
56
,
e2019WR026276
, https://doi.org/10.1029/2019WR026276 (
2020
).
7.
R.
Sprocati
,
A.
Gallo
,
R.
Sethi
, and
M.
Rolle
, “
Electrokinetic delivery of reactants: Pore water chemistry controls transport, mixing, and degradation
,”
Environ. Sci. Technol.
55
,
719
(
2021
).
8.
Z.
Alhashmi
,
M. J.
Blunt
, and
B.
Bijeljic
, “
Predictions of dynamic changes in reaction rates as a consequence of incomplete mixing using pore scale reactive transport modeling on images of porous media
,”
J. Contam. Hydrol.
179
,
171
(
2015
).
9.
M.
Rolle
,
G.
Chiogna
,
D. L.
Hochstetler
, and
P. K.
Kitanidis
, “
On the importance of diffusion and compound-specific mixing for groundwater transport: An investigation from pore to field scale
,”
J. Contam. Hydrol.
153
,
51
(
2013
).
10.
G.
Chiogna
,
O. A.
Cirpka
,
P.
Grathwohl
, and
M.
Rolle
, “
Transverse mixing of conservative and reactive tracers in porous media: Quantification through the concepts of flux-related and critical dilution indices
,”
Water Resour. Res.
47
,
W02505
, https://doi.org/10.1029/2010WR009608 (
2011
).
11.
O. A.
Cirpka
,
A.
Olsson
,
Q. S.
Ju
,
M. A.
Rahman
, and
P.
Grathwohl
, “
Determination of transverse dispersion coefficients from reactive plume lengths
,”
Ground Water
44
,
212
(
2006
).
12.
P. F.
Zhang
,
S. L.
DeVries
,
A.
Dathe
, and
A. C.
Bagtzoglou
, “
Enhanced mixing and plume containment in porous media under time-dependent oscillatory flow
,”
Environ. Sci. Technol.
43
,
6283
(
2009
).
13.
M. M.
Smith
,
J. A. K.
Silva
,
J.
Munakata-Marr
, and
J. E.
Mccray
, “
Compatibility of polymers and chemical oxidants for enhanced groundwater remediation
,”
Environ. Sci. Technol.
42
,
9296
(
2008
).
14.
L.
Zhong
,
M.
Oostrom
,
T. W.
Wietsma
, and
M. A.
Covert
, “
Enhanced remedial amendment delivery through fluid viscosity modifications: Experiments and numerical simulations
,”
J. Contam. Hydrol.
101
,
29
(
2008
).
15.
C.
Chokejaroenrat
,
N.
Kananizadeh
,
C.
Sakulthaew
,
S.
Comfort
, and
Y. S.
Li
, “
Improving the sweeping efficiency of permanganate into low permeable zones to treat TCE: experimental results and model development
,”
Environ. Sci. Technol.
47
,
13031
(
2013
).
16.
L.
Zhong
,
M.
Oostrom
,
M. J.
Truex
,
V. R.
Vermeul
, and
J. E.
Szecsody
, “
Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation
,”
J. Hazard. Mater.
244
,
160
(
2013
).
17.
M. J.
Truex
,
V. R.
Vermeul
,
D. T.
Adamson
,
M.
Oostrom
,
L.
Zhong
,
R. D.
Mackley
,
B. G.
Fritz
,
J. A.
Horner
,
T. C.
Johnson
,
J. N.
Thomle
,
D. R.
Newcomer
,
C. D.
Johnson
,
M.
Rysz
,
T. W.
Wietsma
, and
C. J.
Newell
, “
Field test of enhanced remedial amendment delivery using a shear-thinning fluid
,”
Groundwater Monit. Remediation
35
,
34
(
2015
).
18.
M. J.
Truex
,
V. R.
Vermeul
,
D. P.
Mendoza
,
B. G.
Fritz
,
R. D.
Mackley
,
M.
Oostrom
,
T. W.
Wietsma
, and
T. W.
Macbeth
, “
Injection of zero-valent iron into an unconfined aquifer using shear-thinning fluids
,”
Groundwater Monit. Rem.
31
,
50
(
2011
).
19.
L. A.
Riolfo
,
Y.
Nagatsu
,
S.
Iwata
,
R.
Maes
,
P. M. J.
Trevelyan
, and
A.
De Wit
, “
Experimental evidence of reaction-driven miscible viscous fingering
,”
Phys. Rev. E
85
,
015304
(
2012
).
20.
M.
Mishra
,
P. M. J.
Trevelyan
,
C.
Almarcha
, and
A.
De Wit
, “
Influence of double diffusive effects on miscible viscous fingering
,”
Phys. Rev. Lett.
105
,
204501
(
2010
).
21.
R.
Liyanage
,
A.
Russell
,
J. P.
Crawshaw
, and
S.
Krevor
, “
Direct experimental observations of the impact of viscosity contrast on convective mixing in a three-dimensional porous medium
,”
Phys. Fluids
32
,
056604
(
2020
).
22.
W.
Yang
,
Y.
Wang
,
P.
Sharma
,
B. G.
Li
,
K. S.
Liu
,
J.
Liu
,
M.
Flury
, and
J. Y.
Shang
, “
Effect of naphthalene on transport and retention of biochar colloids through saturated porous media
,”
Colloid Surf., A
530
,
146
(
2017
).
23.
M. B.
Seymour
,
G. X.
Chen
,
C. M.
Su
, and
Y. S.
Li
, “
Transport and retention of colloids in porous media: Does shape really matter?
,”
Environ. Sci. Technol.
47
,
8391
(
2013
).
24.
D.
Kawale
,
E.
Marques
,
P. L. J.
Zitha
,
M. T.
Kreutzer
,
W. R.
Rossen
, and
P. E.
Boukany
, “
Elastic instabilities during the flow of hydrolyzed polyacrylamide solution in porous media: Effect of pore-shape and salt
,”
Soft Matter
13
,
765
(
2017
).
25.
J. D. C.
Jacob
,
R.
Krishnamoorti
, and
J. C.
Conrad
, “
Particle dispersion in porous media: Differentiating effects of geometry and fluid rheology
,”
Phys. Rev. E
96
,
022610
(
2017
).
26.
Y. A.
Tian
,
B.
Gao
,
C.
Silvera-Batista
, and
K. J.
Ziegler
, “
Transport of engineered nanoparticles in saturated porous media
,”
J. Nanopart. Res.
12
,
2371
(
2010
).
27.
L. R.
Zhong
,
J.
Szecsody
,
M.
Oostrom
,
M.
Truex
,
X.
Shen
, and
X. Q.
Li
, “
Enhanced remedial amendment delivery to subsurface using shear thinning fluid and aqueous foam
,”
J. Hazard. Mater.
191
,
249
(
2011
).
28.
Z.
Du
,
J.
Chen
,
S.
Ke
,
Q.
Xu
, and
Z.
Wang
, “
Experimental investigations on spreading and displacement of fluid plumes around an injection well in a contaminated aquifer
,”
J. Hydrol.
617
,
129062
(
2023
).
29.
G.
Chiogna
,
C.
Eberhardt
,
P.
Grathwohl
,
O. A.
Cirpka
, and
M.
Rolle
, “
Evidence of compound-dependent hydrodynamic and mechanical transverse dispersion by multitracer laboratory experiments
,”
Environ. Sci. Technol.
44
,
688
(
2010
).
30.
V.
Srinivasan
,
T. P.
Clement
, and
K. K.
Lee
, “
Domenico solution—Is it valid?
,”
Ground Water
45
,
136
(
2007
).
31.
J.
Bear
,
Dynamics of Fluids in Porous Media
(
American Elsevier Pub. Co
.,
New York
,
1972
).
32.
P. K.
Kitanidis
, “
The concept of the dilution index
,”
Water Resour. Res.
30
,
2011
, https://doi.org/10.1029/94WR00762 (
1994
).
33.
A.
Gbadamosi
,
S.
Patil
,
M. S.
Kamal
,
A. A.
Adewunmi
,
A. S.
Yusuff
,
A.
Agi
, and
J.
Oseh
, “
Application of polymers for chemical enhanced oil recovery: A review
,”
Polymers
14
,
1433
(
2022
).
34.
I.
Bouzid
and
N.
Fatin-Rouge
, “
Assessment of shear-thinning fluids and strategies for enhanced in situ removal of heavy chlorinated compounds-DNAPLs in an anisotropic aquifer
,”
J. Hazard. Mater.
432
,
128703
(
2022
).
35.
C.
Chokejaroenrat
,
S.
Comfort
,
C.
Sakulthaew
, and
B.
Dvorak
, “
Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate
,”
J. Hazard. Mater.
268
,
177
(
2014
).
36.
D.
Izbassarov
,
M. E.
Rosti
,
L.
Brandt
, and
O.
Tammisola
, “
Effect of finite Weissenberg number on turbulent channel flows of an elastoviscoplastic fluid
,”
J. Fluid Mech.
927
,
A45
(
2021
).
37.
M.
Grilli
,
A.
Vazquez-Quesada
, and
M.
Ellero
, “
Transition to turbulence and mixing in a viscoelastic fluid flowing inside a channel with a periodic array of cylindrical obstacles
,”
Phys. Rev. Lett.
110
,
174501
(
2013
).
38.
R. C.
Acharya
,
A. J.
Valocchi
,
C. J.
Werth
, and
T. W.
Willingham
, “
Pore-scale simulation of dispersion and reaction along a transverse mixing zone in two-dimensional porous media
,”
Water Resour. Res.
43
,
W10435
, https://doi.org/10.1029/2007WR005969 (
2007
).
39.
G.
De Josselin De Jong
, “
Longitudinal and transverse diffusion in granular deposits
,”
EOS, Trans. Am. Geophys. Union
39
,
67
(
1958
).
40.
A.
Scheidegger
, “
General theory of dispersion in porous media
,”
J. Geophys. Res.
66
,
3273
, https://doi.org/10.1029/JZ066i010p03273 (
1961
).
41.
D. C.
Mays
and
R. M.
Neupauer
, “
Reply to comment by D. R. Lester et al. on ‘Plume spreading in groundwater by stretching and folding
’,”
Water Resour. Res.
49
,
1192
, https://doi.org/10.1002/wrcr.20081 (
2013
).
42.
F.
Ziliotto
,
M. B.
Hazas
,
M.
Rolle
, and
G.
Chiogna
, “
Mixing enhancement mechanisms in aquifers affected by hydropeaking: Insights from flow-through laboratory experiments
,”
Geophys. Res. Lett.
48
,
e2021GL095336
, https://doi.org/10.1029/2021GL095336 (
2021
).
43.
D. R.
Lester
,
M. G.
Trefry
, and
G.
Metcalfe
, “
Chaotic advection at the pore scale: Mechanisms, upscaling and implications for macroscopic transport
,”
Adv. Water Resour.
97
,
175
(
2016
).
44.
R. L.
Thompson
and
C. M.
Oishi
, “
Reynolds and Weissenberg numbers in viscoelastic flows
,”
J. Non-Newtonian Fluid
292
,
104550
(
2021
).
45.
S.
De
,
P.
Krishnan
,
J.
van der Schaaf
,
J. A. M.
Kuipers
,
E. A. J. F.
Peters
, and
J. T.
Padding
, “
Viscoelastic effects on residual oil distribution in flows through pillared microchannels
,”
J. Colloid Interface Sci.
510
,
262
(
2018
).
46.
A.
Clarke
,
A. M.
Howe
,
J.
Mitchell
,
J.
Staniland
,
L.
Hawkes
, and
K.
Leeper
, “
Mechanism of anomalously increased oil displacement with aqueous viscoelastic polymer solutions
,”
Soft Matter
11
,
3536
(
2015
).
47.
M.
Kumar
,
J. S.
Guasto
, and
A. M.
Ardekani
, “
Transport of complex and active fluids in porous media
,”
J. Rheol.
66
,
375
(
2022
).
48.
C.
Scholz
,
F.
Wirner
,
J. R.
Gomez-Solano
, and
C.
Bechinger
, “
Enhanced dispersion by elastic turbulence in porous media
,”
Europhys. Lett.
107
,
54003
(
2014
).
49.
J. A. K.
Silva
,
M. M.
Smith
,
J.
Munakata-Marr
, and
J. E.
McCray
, “
The effect of system variables on in situ sweep-efficiency improvements via viscosity modification
,”
J. Contam. Hydrol.
136
,
117
(
2012
).
50.
J. A. K.
Silva
,
M.
Liberatore
, and
J. E.
McCray
, “
Characterization of bulk fluid and transport properties for simulating polymer-improved aquifer remediation
,”
J. Environ. Eng.
139
,
149
(
2013
).
51.
L. M.
Ren
,
R. Y.
Wang
,
B.
Qin
,
D. F.
Liu
,
J. Q.
Sang
, and
J.
Dong
, “
Enhanced remediation efficiency of Cr(VI)-contaminated heterogeneous aquifers: Improved sweeping efficiency using shear-thinning fluids
,”
Chemosphere
273
,
129675
(
2021
).
52.
J.
Lian
,
Y.
Fu
,
C.
Guo
,
Y.
He
, and
C.
Qin
, “
Performance of polymer-enhanced KMnO4 delivery for remediation of TCE contaminated heterogeneous aquifer: A bench-scale visualization
,”
J. Contam. Hydrol.
225
,
103507
(
2019
).
53.
S.
Shahsavari
and
G. H.
McKinley
, “
Mobility and pore-scale fluid dynamics of rate-dependent yield-stress fluids flowing through fibrous porous media
,”
J. Non-Newtonian Fluid
235
,
76
(
2016
).
54.
A.
Groisman
and
V.
Steinberg
, “
Efficient mixing at low Reynolds numbers using polymer additives
,”
Nature
410
,
905
(
2001
).

Supplementary Material

You do not currently have access to this content.