One of the key challenges for accurate prediction of hypersonic aerodynamic heating is the exothermic uncertainty due to the complex surface catalytic recombination effect, which is caused by the strong interactions between highly non-equilibrium dissociated gas and the thermal protection material surface. Employing engineered surface morphology to improve thermal protection effects has been proposed, but its effects on surface catalytic recombination remain unclear. To address this problem, this work employs the reactive molecular dynamics method to investigate the surface adsorption and recombination characteristics of continuous impingement of atomic oxygen upon eight different nano-structured silica surfaces. A parametric study of the influences of the gas incident angles and the surface structural parameters, i.e., roughness factor and surface fraction, is conducted. The results show that the surface catalytic recombination performance is very sensitive to the incident angle of the incoming gas, and the presence of nanostructures increases the recombination rate. The influence of surface morphology shows a complicated feature, where nanostructures with moderated fin height and high surface fraction are beneficial for the inhibition of surface recombination effects, leading to reduced exothermic heat release. Such microscopic revelation of the surface morphology effect is helpful for accurate prediction of aerodynamic heat and provides guidance for the surface engineering of optimized morphology to achieve improved thermal protection effect.

1.
P. A.
Gnoffo
, “
Planetary-entry gas dynamics
,”
Annu. Rev. Fluid Mech.
31
,
459
(
1999
).
2.
M.
Yu
,
Z.
Qiu
,
B.
Zhong
, and
Y.
Takahashi
, “
Numerical simulation of thermochemical non-equilibrium flow-field characteristics around a hypersonic atmospheric reentry vehicle
,”
Phys. Fluids
34
,
126103
(
2022
).
3.
J. J.
Bertin
and
R. M.
Cummings
, “
Critical hypersonic aerothermodynamic phenomena
,”
Annu. Rev. Fluid Mech.
38
,
129
(
2006
).
4.
J. W.
Streicher
,
A.
Krish
, and
R. K.
Hanson
, “
High-temperature vibrational relaxation and decomposition of shock-heated nitric oxide. I. Argon dilution from 2200 to 8700 K
,”
Phys. Fluids
34
,
116122
(
2022
).
5.
S.
Lee
and
J. G.
Kim
, “
Stagnation-point heating and ablation analysis of orbital re-entry experiment
,”
Phys. Fluids
33
,
086102
(
2021
).
6.
O.
Uyanna
and
H.
Najafi
, “
Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects
,”
Acta Astronaut.
176
,
341
(
2020
).
7.
A.
Viladegut
and
O.
Chazot
, “
Catalytic characterization in plasma wind tunnels under the influence of gaseous recombination
,”
Phys. Fluids
34
,
027108
(
2022
).
8.
G.
Herdrich
,
M.
Fertig
,
D.
Petkow
,
A.
Steinbeck
, and
S.
Fasoulas
, “
Experimental and numerical techniques to assess catalysis
,”
Prog. Aerosp. Sci.
48
,
27
(
2012
).
9.
Z.
Yuan
,
S.
Huang
,
X.
Gao
, and
J.
Liu
, “
Effects of surface-catalysis efficiency on aeroheating characteristics in hypersonic flow
,”
J. Aerosp. Eng.
30
,
04016086
(
2017
).
10.
G.
Sarma
, “
Physico–chemical modelling in hypersonic flow simulation
,”
Prog. Aerosp. Sci.
36
,
281
(
2000
).
11.
Y.
Yang
,
V. R. P.
Sethuraman
,
H.
Kim
, and
J. G.
Kim
, “
Determination of surface catalysis on copper oxide in a shock tube using thermochemical nonequilibrium CFD analysis
,”
Acta Astronaut.
193
,
75
(
2022
).
12.
I.
Kim
,
S.
Lee
,
J. G.
Kim
, and
G.
Park
, “
Analysis of nitrogen recombination activity on silicon dioxide with stagnation heat-transfer
,”
Acta Astronaut.
177
,
386
(
2020
).
13.
Y.
Yang
,
I.
Kim
, and
G.
Park
, “
Experimental and numerical study of oxygen catalytic recombination of SiC-coated material
,”
Int. J. Heat Mass Transfer
143
,
118510
(
2019
).
14.
B. R.
Hollis
and
D. K.
Prabhu
, “
Assessment of laminar, convective aeroheating prediction uncertainties for Mars-entry vehicles
,”
J. Spacecr. Rockets
50
,
56
(
2013
).
15.
L.
Bedra
and
M. J.
Balat-Pichelin
, “
Comparative modeling study and experimental results of atomic oxygen recombination on silica-based surfaces at high temperature
,”
Aerosp. Sci. Technol.
9
,
318
(
2005
).
16.
S.
Fang
,
X.
Lin
,
H.
Zeng
,
X.
Zhu
,
F.
Zhou
,
J.
Yang
,
F.
Li
,
D.
Ou
, and
X.
Yu
, “
Gas–surface interactions in a large-scale inductively coupled plasma wind tunnel investigated by emission/absorption spectroscopy
,”
Phys. Fluids
34
,
082113
(
2022
).
17.
K. K.
Mackay
,
J. B.
Freund
, and
H. T.
Johnson
, “
Hydrogen recombination rates on silica from atomic-scale calculations
,”
J. Phys. Chem. C
120
,
24137
(
2016
).
18.
Q.
Li
,
X.
Yang
,
W.
Dong
,
Z.
Wang
,
Y.
Du
, and
Y.
Gui
, “
Transition of catalytic recombination pathways on silica-based thermal protection materials at different temperatures using reactive molecular dynamics method
,”
Phys. Fluids
35
,
012105
(
2023
).
19.
Y.
Yang
,
S.
Lee
,
S.-H.
Park
,
G.
Park
,
J. G.
Kim
, and
I.
Kim
, “
Analysis of wall partial pressure-dependence on oxygen surface catalytic recombination with shock-heated flow
,”
Case Stud. Therm. Eng.
28
,
101600
(
2021
).
20.
A. C.
Van Duin
,
S.
Dasgupta
,
F.
Lorant
, and
W. A.
Goddard
, “
ReaxFF: A reactive force field for hydrocarbons
,”
J. Phys. Chem. A
105
,
9396
(
2001
).
21.
Y.
Yu
,
B.
Wang
,
M.
Wang
,
G.
Sant
, and
M.
Bauchy
, “
Revisiting silica with ReaxFF: Towards improved predictions of glass structure and properties via reactive molecular dynamics
,”
J. Non-Cryst. Solids
443
,
148
(
2016
).
22.
S.
AlAreeqi
,
D.
Bahamon
,
K.
Polychronopoulou
, and
L. F.
Vega
, “
Insights into the thermal stability and conversion of carbon-based materials by using ReaxFF reactive force field: Recent advances and future directions
,”
Carbon
196
,
840
866
(
2022
).
23.
T. G.
Desai
,
J. W.
Lawson
, and
P.
Keblinski
, “
Modeling initial stage of phenolic pyrolysis: Graphitic precursor formation and interfacial effects
,”
Polymer
52
,
577
(
2011
).
24.
Z.
Cui
,
G.
Yao
,
J.
Zhao
,
J.
Zhang
, and
D.
Wen
, “
Atomistic-scale investigations of hyperthermal oxygen–graphene interactions via reactive molecular dynamics simulation: The gas effect
,”
Phys. Fluids
33
,
052107
(
2021
).
25.
Z.
Cui
,
J.
Zhao
,
L.
He
,
H.
Jin
,
J.
Zhang
, and
D.
Wen
, “
A reactive molecular dynamics study of hyperthermal atomic oxygen erosion mechanisms for graphene sheets
,”
Phys. Fluids
32
,
112110
(
2020
).
26.
Z.
Cui
,
J.
Zhao
,
G.
Yao
,
J.
Zhang
,
Z.
Li
,
Z.
Tang
, and
D.
Wen
, “
Competing effects of surface catalysis and ablation in hypersonic reentry aerothermodynamic environment
,”
Chin. J. Aeronaut.
35
,
56
(
2022
).
27.
Z.
Cui
,
J.
Zhao
,
G.
Yao
,
Z.
Li
, and
D.
Wen
, “
Molecular insight of the interface evolution of silicon carbide under hyperthermal atomic oxygen impact
,”
Phys. Fluids
34
,
052101
(
2022
).
28.
Y.
Zhang
,
S.
Liang
,
Y.
Zhang
,
R.
Li
,
Z.
Fang
,
S.
Wang
, and
H.
Deng
, “
Role of oxygen in surface kinetics of SiO2 growth on single crystal SiC at elevated temperatures
,”
Ceram. Int.
47
,
1855
(
2021
).
29.
S.
Zhang
,
Z.
Li
,
Y.
Yao
,
L.
Tian
, and
Y.
Yan
, “
Heat transfer characteristics and compatibility of molten salt/ceramic porous composite phase change material
,”
Nano Energy
100
,
107476
(
2022
).
30.
J.
Xiao
,
H.
Zhang
,
X.
Gao
,
H.
Wang
,
G.
Fang
,
B.
Wang
,
C.
Hong
, and
S.
Meng
, “
Insight into pyrolysis behavior of silicone-phenolic hybrid aerogel through thermal kinetic analysis and ReaxFF MD simulations
,”
Chem. Eng. J.
458
,
141480
(
2023
).
31.
T.
Park
,
C.
Park
,
J.
Jung
, and
G. J.
Yun
, “
Investigation of silicon carbide oxidation mechanism using ReaxFF molecular dynamics simulation
,”
J. Spacecr. Rockets
57
,
1328
(
2020
).
32.
J.
Deng
,
J.
Zhang
,
T.
Liang
,
J.
Zhao
,
Z.
Li
, and
D.
Wen
, “
A modified Cercignani–Lampis model with independent momentum and thermal accommodation coefficients for gas molecules scattering on surfaces
,”
Phys. Fluids
34
,
107108
(
2022
).
33.
N.
Andric
and
P.
Jenny
, “
Molecular beam scattering of a diatomic molecule from a solid surface in case of strong rotational non-equilibrium
,”
Phys. Fluids
34
,
027101
(
2022
).
34.
N.
Andric
,
D. W.
Meyer
, and
P.
Jenny
, “
Data-based modeling of gas-surface interaction in rarefied gas flow simulations
,”
Phys. Fluids
31
,
067109
(
2019
).
35.
A.-M.
El-Sayed
,
M. B.
Watkins
,
T.
Grasser
,
V. V.
Afanas'ev
, and
A. L.
Shluger
, “
Hydrogen-induced rupture of strained Si—O bonds in amorphous silicon dioxide
,”
Phys. Rev. Lett.
114
,
115503
(
2015
).
36.
I.
Cozmuta
, “
Molecular mechanisms of gas surface interactions in hypersonic flow
,” AIAA Paper No. 2007-4046,
2007
.
37.
P.
Norman
,
T. E.
Schwartzentruber
,
H.
Leverentz
,
S.
Luo
,
R. N.
Meana-Pañeda
,
Y.
Paukku
, and
D. G.
Truhlar
, “
The structure of silica surfaces exposed to atomic oxygen
,”
J. Phys. Chem. C
117
,
9311
(
2013
).
38.
P.
Norman
,
T.
Schwartzentruber
, and
I.
Cozmuta
, “
Modeling air-SiO2 surface catalysis under hypersonic conditions with ReaxFF molecular dynamics
,” AIAA Paper No. 2010-4320,
2010
.
39.
L.
He
,
Z.
Cui
,
X.
Sun
,
J.
Zhao
, and
D.
Wen
, “
Sensitivity analysis of the catalysis recombination mechanism on nanoscale silica surfaces
,”
Nanomaterials
12
,
2370
(
2022
).
40.
U.
Khalilov
,
G.
Pourtois
,
A.
Van Duin
, and
E.
Neyts
, “
On the c-Si|a-SiO2 interface in hyperthermal Si oxidation at room temperature
,”
J. Phys. Chem. C
116
,
21856
(
2012
).
41.
I.
Kim
,
G.
Park
, and
J. J.
Na
, “
Experimental study of surface roughness effect on oxygen catalytic recombination
,”
Int. J. Heat Mass Transfer
138
,
916
(
2019
).
42.
I.
Kim
,
Y.
Yang
, and
G.
Park
, “
Effect of titanium surface roughness on oxygen catalytic recombination in a shock tube
,”
Acta Astronaut.
166
,
260
(
2020
).
43.
M. A.
Pamungkas
, “
Atomistic simulation of oxygen molecule adsorption on vicinal silicon surface
,”
AIP Conf. Proc.
2021
,
050013
(
2018
).
44.
J. E.
Black
,
C. R.
Iacovella
,
P. T.
Cummings
, and
C.
McCabe
, “
Molecular dynamics study of alkylsilane monolayers on realistic amorphous silica surfaces
,”
Langmuir
31
,
3086
(
2015
).
45.
D.
Stewart
, “
Determination of surface catalytic efficiency for thermal protection materials—Room temperature to their upper use limit
,” in
31st Thermophysics Conference
(
1996
).
46.
K. L.
Carleton
and
W. J.
Marinelli
, “
Spacecraft thermal energy accommodation from atomic recombination
,”
J. Thermophys. Heat Transfer
6
,
650
(
1992
).
47.
S.
Plimpton
,
P.
Crozier
, and
A.
Thompson
, “
LAMMPS-large-scale atomic/molecular massively parallel simulator
,”
Sandia Nat. Lab.
18
,
43
(
2007
).
48.
D. A.
Newsome
,
D.
Sengupta
,
H.
Foroutan
,
M. F.
Russo
, and
A. C.
Van Duin
, “
Oxidation of silicon carbide by O2 and H2O: A ReaxFF reactive molecular dynamics study, Part I
,”
J. Phys. Chem. C
116
,
16111
(
2012
).
49.
Z.
Chen
,
Z.
Sun
,
X.
Chen
,
Y.
Wu
,
X.
Niu
, and
Y.
Song
, “
ReaxFF reactive molecular dynamics study on oxidation behavior of 3C-SiC in H2O and O2
,”
Comput. Mater. Sci.
195
,
110475
(
2021
).
50.
V. T.
Nguyen
and
T. H.
Fang
, “
Material removal and interactions between an abrasive and a SiC substrate: A molecular dynamics simulation study
,”
Ceram. Int.
46
,
5623
(
2020
).
51.
G.
Lan
,
J.
Li
,
G.
Zhang
,
J.
Ruan
,
Z.
Lu
,
S.
Jin
,
D.
Cao
, and
J.
Wang
, “
Thermal decomposition mechanism study of 3-nitro-1, 2, 4-triazol-5-one (NTO): Combined TG-FTIR-MS techniques and ReaxFF reactive molecular dynamics simulations
,”
Fuel
295
,
120655
(
2021
).
52.
Q.
Hu
,
J.-F.
Shu
,
W.
Yang
,
C.
Park
,
M.
Chen
,
T.
Fujita
,
H.-K.
Mao
, and
H.
Sheng
, “
Stability limits and transformation pathways of α-quartz under high pressure
,”
Phys. Rev. B
95
,
104112
(
2017
).
53.
R. N.
Wenzel
, “
Resistance of solid surfaces to wetting by water
,”
Ind. Eng. Chem.
28
,
988
(
1936
).
54.
A.
Cassie
and
S.
Baxter
, “
Wettability of porous surfaces
,”
Trans. Faraday Soc.
40
,
546
(
1944
).
55.
C. T.
Rettner
, “
Reaction of an H-atom beam with Cl/Au (111): Dynamics of concurrent Eley–Rideal and Langmuir–Hinshelwood mechanisms
,”
J. Chem. Phys.
101
,
1529
(
1994
).
You do not currently have access to this content.