We present a computational study of free surface flows with rheologically complex interfaces in the film formation region of a slot coater. The equations of motion for incompressible Newtonian liquids in the bulk flow are coupled with the Boussinesq–Scriven constitutive equation for viscous interfaces in the dynamic boundary condition at the liquid-air free surface and solved with a mixed finite element method. We show that the interfacial viscosity plays a major role in the flow dynamics and operating limits of slot coating. We find that the interfacial viscosity makes viscous interfaces generally stiffer than their simple counterparts, affecting both the normal and the tangential stress jumps across the free surface. As a result, the interfacial viscosity counteracts the meniscus retraction and slows down the film flow, increasing the development length over the substrate and changing the topology of the recirculation region in the coating bead. Remarkably, we also find that the interfacial viscosity can substantially broaden the operating boundaries of the coating window associated with the low-flow limit, suggesting that surface-active components can be suitably designed to allow for the stable production of thinner films at higher speeds by tuning interfacial material properties in slot coating applications.

1.
Modern Coating and Drying Technology
,
1st ed.
, edited by
E. D.
Cohen
and
E. B.
Gutoff
(
Wiley-VCH
,
1992
).
2.
Liquid Film Coating: Scientific Principles and Their Technological Implications
,
1st ed.
, edited by
S. F.
Kistler
and
P. M.
Schweizer
(
Springer
Dordrecht
,
1997
).
3.
E. B.
Gutoff
and
E. D.
Cohen
,
Coating and Drying Defects: Troubleshooting Operating Problems
,
2nd ed.
(
Wiley
,
2006
).
4.
P. M.
Schweizer
,
Premetered Coating Methods: Attractiveness and Limitations
,
1st ed
. (
Springer Cham
,
2022
).
5.
M.
Schmitt
,
M.
Baunach
,
L.
Wengeler
,
K.
Peters
,
P.
Junges
,
P.
Scharfer
, and
W.
Schabel
, “
Slot-die processing of lithium-ion battery electrodes–Coating window characterization
,”
Chem. Eng. Process.: Process Intensif.
68
,
32
37
(
2013
).
6.
M.
Schmitt
,
P.
Scharfer
, and
W.
Schabel
, “
Slot die coating of lithium-ion battery electrodes: Investigations on edge effect issues for stripe and pattern coatings
,”
J. Coat. Technol. Res.
11
,
57
63
(
2014
).
7.
M.
Schmitt
,
R.
Diehm
,
P.
Scharfer
, and
W.
Schabel
, “
An experimental and analytical study on intermittent slot die coating of viscoelastic battery slurries
,”
J. Coat. Technol. Res.
12
,
927
938
(
2015
).
8.
Y.
Rong
,
Y.
Ming
,
W.
Ji
,
D.
Li
,
A.
Mei
,
Y.
Hu
, and
H.
Han
, “
Toward industrial-scale production of perovskite solar cells: Screen printing, slot-die coating, and emerging techniques
,”
J. Phys. Chem. Lett.
9
,
2707
2713
(
2018
).
9.
J. B.
Whitaker
,
D. H.
Kim
,
B. W.
Larson
,
F.
Zhang
,
J. J.
Berry
,
M. F. A. M.
Van Hest
, and
K.
Zhu
, “
Scalable slot-die coating of high performance perovskite solar cells
,”
Sustainable Energy Fuels
2
,
2442
2449
(
2018
).
10.
A.
Verma
,
D.
Martineau
,
E.
Hack
,
M.
Makha
,
E.
Turner
,
F.
Nüesch
, and
J.
Heier
, “
Towards industrialization of perovskite solar cells using slot die coating
,”
J. Mater. Chem. C
8
,
6124
6135
(
2020
).
11.
K. J.
Ruschak
, “
Coating flows
,”
Annu. Rev. Fluid Mech.
17
,
65
89
(
1985
).
12.
S. J.
Weinstein
and
K. J.
Ruschak
, “
Coating flows
,”
Annu. Rev. Fluid Mech.
36
,
29
53
(
2004
).
13.
X.
Ding
,
J.
Liu
, and
T. A. L.
Harris
, “
A review of the operating limits in slot die coating processes
,”
AIChE J.
62
,
2508
2524
(
2016
).
14.
K.-Y.
Lee
,
L.-D.
Liu
, and
T.-J.
Liu
, “
Minimum wet thickness in extrusion slot coating
,”
Chem. Eng. Sci.
47
,
1703
1713
(
1992
).
15.
M. S.
Carvalho
and
H. S.
Kheshgi
, “
Low-flow limit in slot coating: Theory and experiments
,”
AIChE J.
46
,
1907
1917
(
2000
).
16.
Y.-R.
Chang
,
H.-M.
Chang
,
C.-F.
Lin
,
T.-J.
Liu
, and
P.-Y.
Wu
, “
Three minimum wet thickness regions of slot die coating
,”
J. Colloid Interface Sci.
308
,
222
230
(
2007
).
17.
S.
Lee
and
J.
Nam
, “
Analysis of slot coating flow under tilted die
,”
AIChE J.
61
,
1745
1758
(
2015
).
18.
H.
Benkreira
and
J. B.
Ikin
, “
Slot coating minimum film thickness in air and in rarefied helium
,”
Chem. Eng. Sci.
150
,
66
73
(
2016
).
19.
J.
Yoon
,
D.
Kim
,
S.-H.
Lee
,
D.
Kang
, and
J.
Nam
, “
Simplified model for operability window of slot coating without vacuum
,”
Chem. Eng. Sci.
259
,
117766
(
2022
).
20.
H.
Kwak
and
J.
Nam
, “
Effect of slot-die configurations on coating gap dependence of maximum and minimum wet thicknesses
,”
AIChE J.
68
,
e17745
(
2022
).
21.
O. J.
Romero
,
W. J.
Suszynski
,
L. E.
Scriven
, and
M. S.
Carvalho
, “
Low-flow limit in slot coating of dilute solutions of high molecular weight polymer
,”
J. Non-Newtonian Fluid Mech.
118
,
137
156
(
2004
).
22.
S. H.
Lee
,
H. J.
Koh
,
B. K.
Ryu
,
S. J.
Kim
,
H. W.
Jung
, and
J. C.
Hyun
, “
Operability coating windows and frequency response in slot coating flows from a viscocapillary model
,”
Chem. Eng. Sci.
66
,
4953
4959
(
2011
).
23.
S.
Khandavalli
and
J. P.
Rothstein
, “
The effect of shear-thickening on the stability of slot-die coating
,”
AIChE J.
62
,
4536
4547
(
2016
).
24.
S.
Lee
and
J.
Nam
, “
Transient response of slot coating flows of shear-thinning fluids to periodic disturbances
,”
J. Coat. Technol. Res.
14
,
981
990
(
2017
).
25.
H.
Kwak
and
J.
Nam
, “
Simple criterion for vortex formation in the channel flow of power-law fluids
,”
J. Non-Newtonian Fluid Mech.
284
,
104372
(
2020
).
26.
A. G.
Lee
,
E. S. G.
Shaqfeh
, and
B.
Khomami
, “
A study of viscoelastic free surface flows by the finite element method: Hele–Shaw and slot coating flows
,”
J. Non-Newtonian Fluid Mech.
108
,
327
362
(
2002
).
27.
M.
Pasquali
and
L. E.
Scriven
, “
Free surface flows of polymer solutions with models based on the conformation tensor
,”
J. Non-Newtonian Fluid Mech.
108
,
363
409
(
2002
).
28.
O. J.
Romero
,
L. E.
Scriven
, and
M. S.
Carvalho
, “
Slot coating of mildly viscoelastic liquids
,”
J. Non-Newtonian Fluid Mech.
138
,
63
75
(
2006
).
29.
M.
Bajaj
,
J. R.
Prakash
, and
M.
Pasquali
, “
A computational study of the effect of viscoelasticity on slot coating flow of dilute polymer solutions
,”
J. Non-Newtonian Fluid Mech.
149
,
104
123
(
2008
).
30.
Y. W.
Lee
,
W.-G.
Ahn
,
J.
Nam
,
H. W.
Jung
, and
J. C.
Hyun
, “
Operability windows in viscoelastic slot coating flows using a simplified viscoelastic-capillary model
,”
Rheol. Acta
56
,
707
717
(
2017
).
31.
K. H.
Min
and
C.
Kim
, “
Simulation of particle migration in free-surface flows
,”
AIChE J.
56
,
2539
2550
(
2010
).
32.
D. M.
Campana
,
L. D.
Valdez Silva
, and
M. S.
Carvalho
, “
Slot coating flows of non-colloidal particle suspensions
,”
AIChE J.
63
,
1122
1131
(
2017
).
33.
I. R.
Siqueira
,
R. B.
Rebouças
, and
M. S.
Carvalho
, “
Particle migration and alignment in slot coating flows of elongated particle suspensions
,”
AIChE J.
63
,
3187
3198
(
2017
).
34.
R. B.
Rebouças
,
I. R.
Siqueira
, and
M. S.
Carvalho
, “
Slot coating flow of particle suspensions: Particle migration in shear sensitive liquids
,”
J. Non-Newtonian Fluid Mech.
258
,
22
31
(
2018
).
35.
I. R.
Siqueira
and
M. S.
Carvalho
, “
A computational study of the effect of particle migration on the low-flow limit in slot coating of particle suspensions
,”
J. Coat. Technol. Res.
16
,
1619
1628
(
2019
).
36.
G. G.
Fuller
and
J.
Vermant
, “
Complex fluid-fluid interfaces: Rheology and structure
,”
Annu. Rev. Chem. Biomol. Eng.
3
,
519
543
(
2012
).
37.
N.
Jaensson
and
J.
Vermant
, “
Tensiometry and rheology of complex interfaces
,”
Curr. Opin. Colloid Interface Sci.
37
,
136
150
(
2018
).
38.
N. O.
Jaensson
,
P. D.
Anderson
, and
J.
Vermant
, “
Computational interfacial rheology
,”
J. Non-Newtonian Fluid Mech.
290
,
104507
(
2021
).
39.
P. R. C.
Mendes Junior
,
I. R.
Siqueira
,
R. L.
Thompson
, and
M. S.
Carvalho
, “
Computational study of planar extrudate swell flows with a viscous liquid-gas interface
,”
AIChE J.
68
,
e17503
(
2022
).
40.
M. J.
Boussinesq
, “
Sur l'existence d'une viscosité superficielle, dans la mince couche de transition séparant un liquide d'un autre fluide contigu
,”
Ann. Chim. Phys.
29
,
349
357
(
1913
).
41.
L. E.
Scriven
, “
Dynamics of a fluid interface equation of motion for Newtonian surface fluids
,”
Chem. Eng. Sci.
12
,
98
108
(
1960
).
42.
J. T.
Schwalbe
,
F. R.
Phelan
, Jr.
,
P. M.
Vlahovska
, and
S. D.
Hudson
, “
Interfacial effects on droplet dynamics in Poiseuille flow
,”
Soft Matter
7
,
7797
7804
(
2011
).
43.
J.
Gounley
,
G.
Boedec
,
M.
Jaeger
, and
M.
Leonetti
, “
Influence of surface viscosity on droplets in shear flow
,”
J. Fluid Mech.
791
,
464
494
(
2016
).
44.
V.
Narsimhan
, “
The effect of surface viscosity on the translational speed of droplets
,”
Phys. Fluids
30
,
081703
(
2018
).
45.
V.
Narsimhan
, “
Shape and rheology of droplets with viscous surface moduli
,”
J. Fluid Mech.
862
,
385
420
(
2019
).
46.
N.
Singh
and
V.
Narsimhan
, “
Deformation and burst of a liquid droplet with viscous surface moduli in a linear flow field
,”
Phys. Rev. Fluids
5
,
063601
(
2020
).
47.
A.
Martínez-Calvo
and
A.
Sevilla
, “
Temporal stability of free liquid threads with surface viscoelasticity
,”
J. Fluid Mech.
846
,
877
901
(
2018
).
48.
A.
Martínez-Calvo
and
A.
Sevilla
, “
Universal thinning of liquid filaments under dominant surface forces
,”
Phys. Rev. Lett.
125
,
114502
(
2020
).
49.
H.
Wee
,
B. W.
Wagoner
,
P. M.
Kamat
, and
O. A.
Basaran
, “
Effects of surface viscosity on breakup of viscous threads
,”
Phys. Rev. Lett.
124
,
204501
(
2020
).
50.
J.
Li
and
H.
Manikantan
, “
Influence of interfacial rheology on viscous fingering
,”
Phys. Rev. Fluids
6
,
074001
(
2021
).
51.
H.
Conrado
,
E. O.
Dias
, and
J. A.
Miranda
, “
Impact of interfacial rheology on finger tip splitting
,”
Phys. Rev. E
107
,
015103
(
2023
).
52.
I. M.
Coutinho
,
E. O.
Dias
, and
J. A.
Miranda
, “
Effect of interfacial rheology on fingering patterns in rotating Hele-Shaw cells
,”
Phys. Rev. E
107
,
025105
(
2023
).
53.
T. C.
Papanastasiou
,
N.
Malamataris
, and
K.
Ellwood
, “
A new outflow boundary condition
,”
Int. J. Numer. Methods Fluids
14
,
587
608
(
1992
).
54.
D. F.
Griffiths
, “
The ‘no boundary condition’ outflow boundary condition
,”
Int. J. Numer. Methods Fluids
24
,
393
411
(
1997
).
55.
M.
Renardy
, “
Imposing ‘no’ boundary condition at outflow: Why does it work?
,”
Int. J. Numer. Methods Fluids
24
,
413
417
(
1997
).
56.
For a liquid of density ρ = 1 g/cm3 and viscosity μ = 100 cP flowing at a velocity of V = 0.1 m/s in a gap of H = 100 μm, the Reynolds number R e = ρ V H / μ is Re = 0.1, which is sufficiently small to neglect inertial effects in slot coating flows (see Ref. 15).
57.
K. J.
Ruschak
, “
Limiting flow in a pre-metered coating device
,”
Chem. Eng. Sci.
31
,
1057
1060
(
1976
).
58.
B. G.
Higgins
and
L. E.
Scriven
, “
Capillary pressure and viscous pressure drop set bounds on coating bead operability
,”
Chem. Eng. Sci.
35
,
673
682
(
1980
).
You do not currently have access to this content.