The ability to acquire a varifocal optical system with excellent reversibility and repeatability is crucial for many applications. However, current strategies for improving varifocal ability primarily focus on enlarging tunable focal length. The demonstration of an individually encapsulated microlens array is one of the key technological challenges in the varifocal microoptic industry. Inspired by corneas of natural eyes, we develop a self-assembly flow molding approach to fabricate a profile-followed coating onto the droplet surface for long-term encapsulation. Meanwhile, the coating has a supersmooth surface with roughness less than 1 nm within an area of 10  × 10 μm2, which unprecedentedly facilitates the high transparency and photosensitivity of a micro-optical system. Significantly, the elastic modulus of profile-followed coating is as low as 0.25 MPa, which satisfies the large varifocal capacity ranging from 773  to 1600 μm at a low voltage of 5 V. This work opens a new window for exploring the encapsulated fluid components with profile-followed coating in tunable optical systems.

1.
R.
Chen
,
Y.
Wang
,
K.
Guo
,
Y.
Zhang
,
Z.
Wang
,
M.
Zhu
,
K.
Yi
,
Y.
Leng
, and
J.
Shao
, “
Angle-adjustment-based tunable chirped mirrors with continuous dispersion compensation
,”
Opt. Lett.
44
,
6053
6056
(
2019
).
2.
K.
Perera
,
H. N.
Padmini
,
E.
Mann
, and
A.
Jákli
, “
Polymer stabilized paraboloid liquid crystal microlenses with integrated Pancharatnam–Berry phase
,”
Adv. Opt. Mater.
10
,
2101510
(
2022
).
3.
J.
Jiang
,
G.
Shea
,
P.
Rastogi
,
T.
Kamperman
,
C. H.
Venner
, and
C. W.
Visser
, “
Continuous high‐throughput fabrication of architected micromaterials via in‐air photopolymerization
,”
Adv. Mater.
33
,
2006336
(
2021
).
4.
M. G.
Nashwan
,
K. E.
Ragab
, and
M. S.
Faltas
, “
Axisymmetric slow motion of a non-deformable spherical droplet or slip particle toward an orifice in a plane wall
,”
Phys. Fluids
34
,
083106
(
2022
).
5.
J.
Dodoo
and
A. A.
Stokes
, “
Field-induced shaping of sessile paramagnetic drops
,”
Phys. Fluids
32
,
061703
(
2020
).
6.
X.
Zhu
,
Q.
Xu
,
Y.
Hu
,
H.
Li
,
F.
Wang
,
Z.
Peng
, and
H.
Lan
, “
Flexible biconvex microlens array fabrication using combined inkjet-printing and imprint-lithography method
,”
Opt. Laser Technol.
115
,
118
124
(
2019
).
7.
X.
Zhu
,
Z.
Li
,
Y.
Hu
,
H.
Li
,
J.
Yang
, and
H.
Lan
, “
Facile fabrication of defogging microlens arrays using electric field-driven jet printing
,”
Opt. Laser Technol.
123
,
105943
(
2020
).
8.
A.
Kaushal
,
V.
Mehandia
, and
P.
Dhar
, “
Ferrohydrodynamics governed evaporation phenomenology of sessile droplets
,”
Phys. Fluids
33
,
022006
(
2021
).
9.
H.
Zhang
et al, “
3D printing of a PDMS cylindrical microlens array with 100% fill-factor
,”
ACS Appl. Mater. Interfaces
13
,
36295
36306
(
2021
).
10.
C.
Liu
,
L.
Li
, and
Q.-H.
Wang
, “
Bidirectional optical switch based on electrowetting
,”
J. Appl. Phys.
113
,
193106
(
2013
).
11.
C.
Zhao
,
Y.
Liu
,
Y.
Zhao
,
N.
Fang
, and
T. J.
Huang
, “
A reconfigurable plasmofluidic lens
,”
Nat. Commun.
4
,
1
8
(
2013
).
12.
W.
Zhang
,
H.
Zappe
, and
A.
Seifert
, “
Wafer-scale fabricated thermo-pneumatically tunable microlenses
,”
Light: Sci. Appl.
3
,
6
(
2014
).
13.
J.
Eriksen
,
B.
Bilenberg
,
A.
Kristensen
, and
R.
Marie
, “
Optothermally actuated capillary burst valve
,”
Rev. Sci. Instrum.
88
,
045101
(
2017
).
14.
A.
Pavlic
,
C. L.
Harshbarger
,
L.
Rosenthaler
,
J. G.
Snedeker
, and
J.
Dual
, “
Sharp-edge-based acoustofluidic chip capable of programmable pumping, mixing, cell focusing, and trapping
,”
Phys. Fluids
35
,
022006
(
2023
).
15.
J.
Wang
,
S.
Hahn
,
E.
Amstad
, and
N.
Vogel
, “
Tailored double emulsions made simple
,”
Adv. Mater.
34
,
2107338
(
2022
).
16.
N.
Leister
,
G. T.
Vladisavljević
, and
H. P.
Karbstein
, “
Novel glass capillary microfluidic devices for the flexible and simple production of multi-cored double emulsions
,”
J. Colloid Interface Sci.
611
,
451
461
(
2022
).
17.
M.
Piskunov
,
N.
Khomutov
,
A.
Semyonova
,
A.
Ashikhmin
, and
S.
Misyura
, “
Unsteady convective flow of a preheated water-in-oil emulsion droplet impinging on a heated wall
,”
Phys. Fluids
34
,
093311
(
2022
).
18.
Z.
Sheng
,
Y.
Ding
,
G.
Li
,
C.
Fu
,
Y.
Hou
,
J.
Lyu
,
K.
Zhang
, and
X.
Zhang
, “
Solid–liquid host–guest composites: The marriage of porous solids and functional liquids
,”
Adv. Mater.
33
,
2104851
(
2021
).
19.
N.
Binh-Khiem
,
K.
Matsumoto
, and
I.
Shimoyama
, “
Tensile film stress of parylene deposited on liquid
,”
Langmuir
26
,
18771
18775
(
2010
).
20.
P. D.
Haller
,
L. C.
Bradley
, and
M.
Gupta
, “
Effect of surface tension, viscosity, and process conditions on polymer morphology deposited at the liquid–vapor interface
,”
Langmuir
29
,
11640
11645
(
2013
).
21.
M. M.
De Luna
,
P.
Karandikar
, and
M.
Gupta
, “
Interactions between polymers and liquids during initiated chemical vapor deposition onto liquid substrates
,”
Mol. Syst. Des. Eng.
5
,
15
21
(
2020
).
22.
S.
Gaiser
,
U.
Schütz
,
P.
Rupper
, and
D.
Hegemann
, “
Plasma processing of low vapor pressure liquids to generate functional surfaces
,”
Molecules
25
,
6024
(
2020
).
23.
C.
Huh
and
L. E.
Scriven
, “
Hydrodynamic model of steady movement of a solid/liquid/fluid contact line
,”
J. Colloid Interface Sci.
35
,
85
101
(
1971
).
24.
R. L.
Hoffman
, “
A study of the advancing interface. I. Interface shape in liquid–gas systems
,”
J. Colloid Interface Sci.
50
,
228
241
(
1975
).
25.
R.
Tadmor
, “
Line energy and the relation between advancing, receding, and Young contact angles
,”
Langmuir
20
,
7659
7664
(
2004
).
26.
X.
Li
,
Y.
Ding
,
J.
Shao
,
H.
Tian
, and
H.
Liu
, “
Fabrication of microlens arrays with well‐controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes
,”
Adv. Mater.
24
,
OP165
OP169
(
2012
).
27.
R. A.
Hayes
and
B. J.
Feenstra
, “
Video-speed electronic paper based on electrowetting
,”
Nature
425
,
383
385
(
2003
).
28.
X.
Jiang
and
L.
Yang
, “
Optothermal dynamics in whispering-gallery microresonators
,”
Light: Sci. Appl.
9
,
1
15
(
2020
).
29.
X.
Zeng
and
H.
Jiang
, “
Liquid tunable microlenses based on MEMS techniques
,”
J. Phys. D: Appl. Phys.
46
,
323001
(
2013
).
30.
N.-S.
Cheng
, “
Formula for the viscosity of a glycerol–water mixture
,”
Ind. Eng. Chem. Res.
47
,
3285
3288
(
2008
).
31.
Y. M.
Chen
and
A. J.
Pearlstein
, “
Viscosity-temperature correlation for glycerol-water solutions
,”
Ind. Eng. Chem. Res.
26
,
1670
1672
(
1987
).
32.
H.
Li
,
X.
Gong
,
Q.
Ni
,
J.
Zhao
,
H.
Zhang
,
T.
Wang
, and
W.
Yu
, “
Replication and characterization of the compound eye of a fruit fly for imaging purpose
,”
Appl. Phys. Lett.
105
,
143705
(
2014
).

Supplementary Material

You do not currently have access to this content.