In this paper, the asymmetric breakup dynamics of a solitary water droplet through a Y-junction microchannel with a non-uniform outlet flow rate is numerically investigated under a spacious range of capillary number (0.01 < Ca < 0.3), outlet flow rate ratio (1 < λ < 11), and initial droplet volume (0.7 < V* < 4.0). Four distinct breakup patterns, namely, Obstructed–Obstructed breakup, Obstructed–Tunnel breakup, Tunnel–Tunnel breakup, and Non-breakup, are recognized. The quantitative impacts of the significant parameters on the breakup characteristics are determined, and the breakup threshold is predicted using the correlations. As per the results, the evolution of neck thickness is significantly influenced by the outlet flow rate ratio and capillary number but is less dependent on the initial droplet volume. A series of functional correlations are proposed under various Ca and V* values to describe the variation in the splitting ratio of offspring droplets based on the exponential law.

1.
J.
Huang
,
F.
Lin
, and
C.
Xiong
, “
Mechanical characterization of single cells based on microfluidic techniques
,”
TrAC, Trends Anal. Chem.
117
,
47
(
2019
).
2.
T.
Zhu
,
Z.
Pei
,
J.
Huang
,
C.
Xiong
,
S.
Shi
, and
J.
Fang
, “
Detection of bacterial cells by impedance spectra via fluidic electrodes in a microfluidic device
,”
Lab Chip
10
,
1557
(
2010
).
3.
T.
Han
,
L.
Zhang
,
H.
Xu
, and
J.
Xuan
, “
Factory-on-chip: Modularised microfluidic reactors for continuous mass production of functional materials
,”
Chem. Eng. J.
326
,
765
(
2017
).
4.
T. Y.
Lee
,
T. M.
Choi
,
T. S.
Shim
,
R. A.
Frijns
, and
S. H.
Kim
, “
Microfluidic production of multiple emulsions and functional microcapsules
,”
Lab Chip
16
,
3415
(
2016
).
5.
Z.
Yuan
,
X.
Yuan
,
Y.
Zhao
,
Q.
Cai
,
Y.
Wang
,
R.
Luo
,
S.
Yu
,
Y.
Wang
,
J.
Han
,
L.
Ge
,
J.
Huang
, and
C.
Xiong
, “
Injectable GelMA cryogel microspheres for modularized cell delivery and potential vascularized bone regeneration
,”
Small
17
,
e2006596
(
2021
).
6.
J.
Zhang
,
S. D.
Ling
,
A.
Chen
,
Z.
Chen
,
W.
Ma
, and
J.
Xu
, “
The liquid–liquid flow dynamics and droplet formation in a modified step T-junction microchannel
,”
AIChE J.
68
,
e17611
(
2022
).
7.
L.
Lei
,
Y.
Zhao
,
X.
Wang
,
G.
Xin
, and
J.
Zhang
, “
Experimental and numerical studies of liquid-liquid slug flows in micro channels with Y-junction inlets
,”
Chem. Eng. Sci.
252
,
117289
(
2022
).
8.
Y.
Ma
,
M.
Zheng
,
M. G.
Bah
, and
J.
Wang
, “
Effects of obstacle lengths on the asymmetric breakup of a droplet in a straight microchannel
,”
Chem. Eng. Sci.
179
,
104
(
2018
).
9.
L.
Qian
,
H.
Cong
,
L.
Lv
,
Q.-f.
Fu
, and
C.
Fu
, “
Dynamic behavior of droplets impacting cylindrical superhydrophobic surfaces with different structures
,”
Phys. Fluids
35
,
023331
(
2023
).
10.
Q.
Chen
,
J.
Li
,
Y.
Song
,
B.
Chen
,
D. M.
Christopher
, and
X.
Li
, “
Pressure-driven microfluidic droplet formation in Newtonian and shear-thinning fluids in glass flow-focusing microchannels
,”
Int. J. Multiphase Flow
140
,
103648
(
2021
).
11.
P.
Kumari
and
A.
Atta
, “
Non-Newtonian droplet breakup in a T-junction microdevice containing constriction induced asymmetric parallel branches
,”
Phys. Fluids
35
,
022004
(
2023
).
12.
I.
Chakraborty
,
J.
Ricouvier
,
P.
Yazhgur
,
P.
Tabeling
, and
A. M.
Leshansky
, “
Droplet generation at Hele-Shaw microfluidic T-junction
,”
Phys. Fluids
31
,
022010
(
2019
).
13.
Y.
Pang
,
Q.
Zhou
,
X.
Wang
,
Y.
Lei
,
Y.
Ren
,
M.
Li
,
J.
Wang
, and
Z.
Liu
, “
Droplets generation under different flow rates in T‐junction microchannel with a neck
,”
AIChE J.
66
,
e16290
(
2020
).
14.
Y.
Qiao
,
J.
Fu
,
F.
Yang
,
M.
Duan
,
M.
Huang
,
J.
Tu
, and
Z.
Lu
, “
An efficient strategy for a controllable droplet merging system for digital analysis
,”
RSC Adv.
8
,
34343
(
2018
).
15.
S.
Datta
,
Y.
Ma
,
A. K.
Das
, and
P. K.
Das
, “
Investigation of droplet coalescence propelled by dielectrophoresis
,”
AIChE J.
65
,
829
(
2019
).
16.
S.
Ding
,
X.
Liu
,
X.
Wu
, and
X.
Zhang
, “
Droplet breakup and rebound during impact on small cylindrical superhydrophobic targets
,”
Phys. Fluids
32
,
102106
(
2020
).
17.
H.
Wu
,
F.
Zhang
, and
Z.
Zhang
, “
Droplet breakup and coalescence of an internal-mixing twin-fluid spray
,”
Phys. Fluids
33
,
013317
(
2021
).
18.
P.
Liang
,
J.
Ye
,
D.
Zhang
,
X.
Zhang
,
Z.
Yu
, and
B.
Lin
, “
Controllable droplet breakup in microfluidic devices via hydrostatic pressure
,”
Chem. Eng. Sci.
226
,
115856
(
2020
).
19.
C.
Yang
,
R.
Qiao
,
K.
Mu
,
Z.
Zhu
,
R. X.
Xu
, and
T.
Si
, “
Manipulation of jet breakup length and droplet size in axisymmetric flow focusing upon actuation
,”
Phys. Fluids
31
,
091702
(
2019
).
20.
Z.
Liu
,
D.
Li
,
X.
Wang
,
Y.
Pang
,
Y.
Ma
,
M.
Li
, and
J.
Wang
, “
Breakup regimes of double emulsion droplets in a microfluidic Y-junction
,”
Phys. Fluids
33
,
102009
(
2021
).
21.
F.
Shen
,
Y.
Li
,
Z.
Liu
, and
X.
Li
, “
Study of flow behaviors of droplet merging and splitting in microchannels using micro-PIV measurement
,”
Microfluid. Nanofluid.
21
,
66
(
2017
).
22.
Z.
Yan
,
H.
Huang
, and
Z.
Pan
, “
Bubble breakup and boiling heat transfer in Y-shaped bifurcating microchannels
,”
AIChE J.
69
,
e17836
(
2022
).
23.
A. M.
Leshansky
and
L. M.
Pismen
, “
Breakup of drops in a microfluidic T junction
,”
Phys. Fluids
21
,
023303
(
2009
).
24.
A. M.
Leshansky
,
S.
Afkhami
,
M. C.
Jullien
, and
P.
Tabeling
, “
Obstructed breakup of slender drops in a microfluidic T junction
,”
Phys. Rev. Lett.
108
,
264502
(
2012
).
25.
D. R.
Link
,
S. L.
Anna
,
D. A.
Weitz
, and
H. A.
Stone
, “
Geometrically mediated breakup of drops in microfluidic devices
,”
Phys. Rev. Lett.
92
,
054503
(
2004
).
26.
M.-C.
Jullien
,
M.-J.
Tsang Mui Ching
,
C.
Cohen
,
L.
Menetrier
, and
P.
Tabeling
, “
Droplet breakup in microfluidic T-junctions at small capillary numbers
,”
Phys. Fluids
21
,
072001
(
2009
).
27.
D.
Ma
,
D.
Liang
,
C.
Zhu
,
T.
Fu
,
Y.
Ma
,
X.
Yuan
, and
H. Z.
Li
, “
The breakup dynamics and mechanism of viscous droplets in Y-shaped microchannels
,”
Chem. Eng. Sci.
231
,
116300
(
2021
).
28.
P.
Garstecki
,
M. J.
Fuerstman
,
H. A.
Stone
, and
G. M.
Whitesides
, “
Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up
,”
Lab Chip
6
,
437
(
2006
).
29.
A. E. M.
Mora
,
A. L. F.
de Lima e Silva
, and
S. M. M.
de Lima e Silva
, “
Numerical study of the dynamics of a droplet in a T-junction microchannel using OpenFOAM
,”
Chem. Eng. Sci.
196
,
514
(
2019
).
30.
Y.
Chen
and
Z.
Deng
, “
Hydrodynamics of a droplet passing through a microfluidic T-junction
,”
J. Fluid Mech.
819
,
401
(
2017
).
31.
Y.
Ma
,
C.
Zhu
,
T.
Fu
,
Y.
Ma
, and
H. Z.
Li
, “
Dynamics of non-Newtonian droplet breakup with partial obstruction in microfluidic Y-junction
,”
Chem. Eng. Sci.
240
,
116696
(
2021
).
32.
A.
Carlson
,
M.
Do-Quang
, and
G.
Amberg
, “
Droplet dynamics in a bifurcating channel
,”
Int. J. Multiphase Flow
36
,
397
(
2010
).
33.
X.
Sun
,
C.
Zhu
,
T.
Fu
,
Y.
Ma
, and
H. Z.
Li
, “
Dynamics of droplet breakup and formation of satellite droplets in a microfluidic T-junction
,”
Chem. Eng. Sci.
188
,
158
(
2018
).
34.
W.
Du
,
T.
Fu
,
C.
Zhu
,
Y.
Ma
, and
H. Z.
Li
, “
Breakup dynamics for high-viscosity droplet formation in a flow-focusing device: Symmetrical and asymmetrical ruptures
,”
AIChE J.
62
,
325
(
2016
).
35.
V.
van Steijn
,
C. R.
Kleijn
, and
M. T.
Kreutzer
, “
Flows around confined bubbles and their importance in triggering pinch-off
,”
Phys. Rev. Lett.
103
,
214501
(
2009
).
36.
M.
De Menech
,
P.
Garstecki
,
F.
Jousse
, and
H. A.
Stone
, “
Transition from squeezing to dripping in a microfluidic T-shaped junction
,”
J. Fluid Mech.
595
,
141
(
2008
).
37.
D. A.
Hoang
,
L. M.
Portela
,
C. R.
Kleijn
,
M. T.
Kreutzer
, and
V.
van Steijn
, “
Dynamics of droplet breakup in a T-junction
,”
J. Fluid Mech.
717
,
R4
(
2013
).
38.
Z.
Yan
,
H.
Huang
,
S.
Li
,
W.
Wang
, and
Z.
Pan
, “
Three-dimensional numerical study on evaporating two-phase flow in heated micro T-junction
,”
Chem. Eng. Sci.
250
,
117375
(
2022
).
39.
Y.
Fu
,
L.
Bai
,
Y.
Jin
, and
Y.
Cheng
, “
Theoretical analysis and simulation of obstructed breakup of micro-droplet in T-junction under an asymmetric pressure difference
,”
Phys. Fluids
29
,
032003
(
2017
).
40.
Z.
Liu
,
C.
Zhang
,
Y.
Pang
,
W.
Liu
, and
X.
Wang
, “
Dynamics of droplet breakup in unilateral Y-junctions with different angles
,”
J. Ind. Eng. Chem.
112
,
46
(
2022
).
41.
X.
Wang
,
Z.
Liu
, and
Y.
Pang
, “
Breakup dynamics of droplets in an asymmetric bifurcation by μPIV and theoretical investigations
,”
Chem. Eng. Sci.
197
,
258
(
2019
).
42.
X.
Wang
,
Z.
Liu
, and
Y.
Pang
, “
Droplet breakup in an asymmetric bifurcation with two angled branches
,”
Chem. Eng. Sci.
188
,
11
(
2018
).
43.
X.
Wang
,
Y.
Liu
,
D.
Liu
,
X.
Ge
,
L.
Li
, and
T.
Qiu
, “
Droplet breakup in the square microchannel with a short square constriction to generate slug flow
,”
AIChE J.
68
,
e17739
(
2022
).
44.
M.
Isanejad
and
K.
Fallah
, “
Numerical study of droplet breakup in an asymmetric T-junction microchannel with different cross-section ratios
,”
Int. J. Mod. Phys. C
33
,
2250023
(
2022
).
45.
M.
Samie
,
A.
Salari
, and
M. B.
Shafii
, “
Breakup of microdroplets in asymmetric T junctions
,”
Phys. Rev. E
87
,
053003
(
2013
).
46.
J.
Wang
and
D.
Yu
, “
Asymmetry of flow fields and asymmetric breakup of a droplet
,”
Microfluid. Nanofluid.
18
,
709
(
2015
).
47.
P.
Ma
,
T.
Fu
,
C.
Zhu
, and
Y.
Ma
, “
Asymmetrical breakup and size distribution of droplets in a branching microfluidic T-junction
,”
Korean J. Chem. Eng.
36
,
21
(
2019
).
48.
S. S.
Schütz
,
J. W.
Khor
,
S. K. Y.
Tang
, and
T. M.
Schneider
, “
Interaction and breakup of droplet pairs in a microchannel Y-junction
,”
Phys. Rev. Fluids
5
,
083605
(
2020
).
49.
M.
Yamada
,
S.
Doi
,
H.
Maenaka
,
M.
Yasuda
, and
M.
Seki
, “
Hydrodynamic control of droplet division in bifurcating microchannel and its application to particle synthesis
,”
J. Colloid Interface Sci.
321
,
401
(
2008
).
50.
K.
Fallah
and
E.
Fattahi
, “
Splitting of droplet with different sizes inside a symmetric T-junction microchannel using an electric field
,”
Sci. Rep.
12
,
3226
(
2022
).
51.
N.
Behera
and
S.
Chakraborty
, “
Electric-field-mediated morpho-dynamic evolution in drop–drop coalescence phenomena in the inertio-capillary regime
,”
J. Fluid Mech.
956
,
A22
(
2023
).
52.
M. A.
Bijarchi
,
M.
Dizani
,
M.
Honarmand
, and
M. B.
Shafii
, “
Splitting dynamics of ferrofluid droplets inside a microfluidic T-junction using a pulse-width modulated magnetic field in micro-magnetofluidics
,”
Soft Matter
17
,
1317
(
2021
).
53.
M.
Aboutalebi
,
M. A.
Bijarchi
,
M. B.
Shafii
, and
S.
Kazemzadeh Hannani
, “
Numerical investigation on splitting of ferrofluid microdroplets in T-junctions using an asymmetric magnetic field with proposed correlation
,”
J. Magn. Magn. Mater.
447
,
139
(
2018
).
54.
S.
Shyam
,
B.
Dhapola
, and
P. K.
Mondal
, “
Magnetofluidic based controlled droplet breakup: Effect of non-uniform force field
,”
J. Fluid Mech.
944
,
A51
(
2022
).
55.
J.
Park
,
J. H.
Jung
,
K.
Park
,
G.
Destgeer
,
H.
Ahmed
,
R.
Ahmad
, and
H. J.
Sung
, “
On-demand acoustic droplet splitting and steering in a disposable microfluidic chip
,”
Lab Chip
18
,
422
(
2018
).
56.
R.
Raj
,
N.
Mathur
, and
V.
Buwa
, “
Numerical simulations of liquid–liquid flows in microchannels
,”
Ind. Eng. Chem. Res.
49
,
10606
(
2010
).
57.
J. U.
Brackbill
,
D. B.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
,
335
(
1992
).
58.
Z.
Pan
,
J. A.
Weibel
, and
S. V.
Garimella
, “
Spurious current suppression in VOF-CSF simulation of slug flow through small channels
,”
Numer. Heat Transfer, Part A
67
,
1–12
(
2015
).
59.
E.
Lac
and
J. D.
Sherwood
, “
Motion of a drop along the centreline of a capillary in a pressure-driven flow
,”
J. Fluid Mech.
640
,
27
(
2009
).
60.
D. A.
Hoang
,
C.
Haringa
,
L. M.
Portela
,
M. T.
Kreutzer
,
C. R.
Kleijn
, and
V.
van Steijn
, “
Design and characterization of bubble-splitting distributor for scaled-out multiphase microreactors
,”
Chem. Eng. J.
236
,
545
(
2014
).
61.
S.
Protière
,
M. Z.
Bazant
,
D. A.
Weitz
, and
H. A.
Stone
, “
Droplet breakup in flow past an obstacle: A capillary instability due to permeability variations
,”
Europhys. Lett.
92
,
54002
(
2010
).
You do not currently have access to this content.