Particle propulsion by an attached acoustic cavitation bubble under strong ultrasonic wave excitation occupies the core of many applications, including ultrasonic cleaning, ultrasonography, targeted therapy, and microbubble motors. However, the driving capacity and mode of bubbles in the field of ultrasonics are far from being well understood, which severely limits its applicability in a variety of fields. In this study, a fluid–structure interaction model based on the boundary integral method is proposed to simulate complex interactions between a suspended spherical particle and an attached cavitation bubble. A one-to-one comparison between the numerical results and experimental data demonstrates the distinct advantage of our model over conventional approaches. Thereafter, we systematically investigate the dependence of bubble–particle interactions on the governing parameters, including the amplitude and phase of the ultrasonic wave, particle density, and particle-to-bubble size ratio. We also document different types of bubble dynamic behaviors under various governing parameters. Finally, we obtain scaling laws for the maximum displacement of the particle with respect to the governing parameters.

1.
E. N.
Harvey
,
D. K.
Barnes
,
W. D.
McElroy
,
A. H.
Whiteley
,
D. C.
Pease
, and
K. W.
Cooper
, “
Bubble formation in animals—I: Physical factors
,”
J. Cell. Comp. Physiol.
24
,
1
22
(
1944
).
2.
M.
Greenspan
and
C. E.
Tschiegg
, “
Radiation-induced acoustic cavitation; apparatus and some results
,”
J. Res. Natl. Bur. Stand., Sect. C
71
,
299
312
(
1967
).
3.
S. I.
Madanshetty
, “
A conceptual model for acoustic microcavitation
,”
J. Acoust. Soc. Am.
98
,
2681
2689
(
1995
).
4.
K. A.
Mørch
, “
Cavitation nuclei and bubble formation—A dynamic liquid-solid interface problem
,”
J. Fluids Eng.
122
,
494
498
(
2000
).
5.
H. B.
Marschall
,
K. A.
Mørch
,
A. P.
Keller
, and
M.
Kjeldsen
, “
Cavitation inception by almost spherical solid particles in water
,”
Phys. Fluids
15
,
545
553
(
2003
).
6.
J.
Madadnia
and
I.
Owen
, “
Accelerated surface erosion by cavitating particulate-laden flows
,”
Wear
165
,
113
116
(
1993
).
7.
J.
Madadnia
and
I.
Owen
, “
Erosion in conical diffusers in particulate-laden cavitating flow
,”
Int. J. Multiphase Flow
21
,
1253
1257
(
1995
).
8.
Y.
Zhang
,
Z.
Qian
,
B.
Ji
, and
Y.
Wu
, “
A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow
,”
Renewable Sust. Energy Rev.
56
,
303
318
(
2016
).
9.
T. G.
Leighton
, “
The acoustic bubble: Oceanic bubble acoustics and ultrasonic cleaning
,”
Proc. Meet. Acoust.
24
,
070006
(
2015
).
10.
L.
Azar
, “
Cavitation in ultrasonic cleaning and cell disruption
,” available online at http://refhub.elsevier.com/S1385-8947(21)03359-3/h0300.
11.
M.
Kuwahara
,
N.
Ioritani
,
K. T. K.
Kambe
,
T.
Saito
,
M.
Igarashi
,
S.
Shirai
,
S.
Orikasa
, and
K.
Takayama
, “
Acoustic cavitation bubbles in the kidney induced by focused shock waves in extracorporeal shock wave lithotripsy
,”
AIP Conf. Proc.
208
,
173
178
(
1990
).
12.
M.
Ghorbani
,
O.
Oral
,
S.
Ekici
,
D.
Gozuacik
, and
A.
Koşar
, “
Review on lithotripsy and cavitation in urinary stone therapy
,”
IEEE Rev. Biomed. Eng.
9
,
264
283
(
2016
).
13.
F.
Guo
,
M.
Yu
,
J.
Wang
,
F.
Tan
, and
N.
Li
, “
Smart IR780 theranostic nanocarrier for tumor-specific therapy: Hyperthermia-mediated bubble-generating and folate-targeted liposomes
,”
ACS Appl. Mater. Interfaces
7
,
20556
20567
(
2015
).
14.
J.
Gâteau
,
L.
Marsac
,
M.
Pernot
,
J. F.
Aubry
,
M.
Tanter
, and
M.
Fink
, “
Transcranial ultrasonic therapy based on time reversal of acoustically induced cavitation bubble signature
,”
IEEE Trans. Biomed. Eng.
57
,
134
144
(
2010
).
15.
Y.
Feng
,
D.
Jia
,
H.
Yue
,
J.
Wang
,
W.
Song
,
L.
Li
,
A.-M.
Zhang
,
S.
Li
,
X.
Chang
, and
D.
Zhou
, “
Breaking through barriers: Ultrafast microbullet based on cavitation bubble
,”
Small
(published online) (
2023
).
16.
O.
Dincel
,
T.
Ueta
, and
J.
Kameoka
, “
Acoustic driven microbubble motor device
,”
Sens. Actuators A
295
,
343
347
(
2019
).
17.
S.
Poulain
,
G.
Guenoun
,
S.
Gart
,
W.
Crowe
, and
S.
Jung
, “
Particle motion induced by bubble cavitation
,”
Phys. Rev. Lett.
114
,
214501
(
2015
).
18.
S.
Wu
,
Z.
Zuo
,
H. A.
Stone
, and
S.
Liu
, “
Motion of a free-settling spherical particle driven by a laser-induced bubble
,”
Phys. Rev. Lett.
119
,
084501
(
2017
).
19.
S.
Wu
,
B.
Li
,
Z.
Zuo
, and
S.
Liu
, “
Dynamics of a single free-settling spherical particle driven by a laser-induced bubble near a rigid boundary
,”
Phys. Rev. Fluid
6
,
093602
(
2021
).
20.
S.
Li
,
A.-M.
Zhang
,
R.
Han
, and
Y.
Liu
, “
Experimental and numerical study on bubble-sphere interaction near a rigid wall
,”
Phys. Fluids
29
,
092102
(
2017
).
21.
M.
Arora
,
C. D.
Ohl
, and
K. A.
Mørch
, “
Cavitation inception on microparticles: A self-propelled particle accelerator
,”
Phys. Rev. Lett.
92
,
174501
(
2004
).
22.
S.
Li
,
A.-M.
Zhang
,
S.
Wang
, and
R.
Han
, “
Transient interaction between a particle and an attached bubble with an application to cavitation in silt-laden flow
,”
Phys. Fluids
30
,
082111
(
2018
).
23.
Y.
Feng
,
X.
Chang
,
H.
Liu
,
Y.
Hu
,
T.
Li
, and
L.
Li
, “
Multi-response biocompatible Janus micromotor for ultrasonic imaging contrast enhancement
,”
Appl. Mater. Today
23
,
101026
(
2021
).
24.
B. M.
Borkent
,
M.
Arora
,
C. D.
Ohl
,
N. D.
Jong
,
M.
Versluis
,
D.
Lohse
,
K. A.
Mørch
,
E.
Klaseboer
, and
B. C.
Khoo
, “
The acceleration of solid particles subjected to cavitation nucleation
,”
J. Fluid Mech.
610
,
157
182
(
2008
).
25.
L.
Shen
,
C.
Wang
, and
Q.
Hu
, “
Force on a compressible sphere and the resonance of a bubble in standing surface acoustic waves
,”
Phys. Rev. E
98
,
043108
(
2018
).
26.
X.
Wang
,
G.
Wu
,
X.
Zheng
,
X.
Du
,
Y.
Zhang
, and
Y.
Zhang
, “
Theoretical investigation and experimental support for the cavitation bubble dynamics near a spherical particle based on Weiss theorem and Kelvin impulse
,”
Ultrason. Sonochem.
89
,
106130
(
2022
).
27.
J.
Zevnik
and
M.
Dular
, “
Cavitation bubble interaction with a rigid spherical particle on a microscale
,”
Ultrason. Sonochem.
69
,
105252
(
2020
).
28.
J. R.
Blake
,
B. B.
Taib
, and
G.
Doherty
, “
Transient cavities near boundaries—Part 1: Rigid boundary
,”
J. Fluid Mech.
170
,
479
497
(
1986
).
29.
Q.
Wang
,
K. S.
Yeo
,
B. C.
Khoo
, and
K. Y.
Lam
, “
Strong interaction between a buoyancy bubble and a free surface
,”
Theor. Comput. Fluid Dyn.
8
,
73
88
(
1996
).
30.
G. T.
Bokman
,
L.
Biasiori-Poulanges
,
B.
Lukić
,
C.
Bourquard
,
D. W.
Meyer
,
A.
Rack
, and
O.
Supponen
, “
High-speed x-ray phase-contrast imaging of single cavitation bubbles near a solid boundary
,”
Phys. Fluids
35
,
013322
(
2023
).
31.
R.
Han
,
A.-M.
Zhang
,
S.
Tan
, and
S.
Li
, “
Interaction of cavitation bubbles with the interface of two immiscible fluids on multiple time scales
,”
J. Fluid Mech.
932
,
A8
(
2022
).
32.
A.-M.
Zhang
,
S.-M.
Li
,
P.
Cui
,
S.
Li
, and
Y.
Liu
, “
A unified theory for bubble dynamics
,”
Phys. Fluids
35
,
033323
(
2023
).
33.
Q.
Wang
,
W.
Liu
,
C.
Corbett
, and
W. R.
Smith
, “
Microbubble dynamics in a viscous compressible liquid subject to ultrasound
,”
Phys. Fluids
34
,
012105
(
2022
).
34.
Q.
Zeng
,
H.
An
, and
C. D.
Ohl
, “
Wall shear stress from jetting cavitation bubbles: Influence of the stand-off distance and liquid viscosity
,”
J. Fluid Mech.
932
,
A14
(
2022
).
35.
S.
Li
,
A.-M.
Zhang
,
R.
Han
, and
Q.
Ma
, “
3D full coupling model for strong interaction between a pulsating bubble and a movable sphere
,”
J. Comput. Phys.
392
,
713
731
(
2019
).
36.
P.
Sun
,
D. L.
Touzé
,
G.
Oger
, and
A.-M.
Zhang
, “
An accurate SPH volume adaptive scheme for modeling strongly-compressible multiphase flows—Part 2: Extension of the scheme to cylindrical coordinates and simulations of 3D axisymmetric problems with experimental validations
,”
J. Comput. Phys.
426
,
109936
(
2021
).
37.
S.
Li
,
R.
Han
,
A.-M.
Zhang
, and
Q.
Wang
, “
Analysis of pressure field generated by a collapsing bubble
,”
Ocean Eng.
117
,
22
38
(
2016
).
38.
X.
Huang
,
Q.
Wang
,
A.-M.
Zhang
, and
J.
Su
, “
Dynamic behaviour of a two-microbubble system under ultrasonic wave excitation
,”
Ultrason. Sonochem.
43
,
166
174
(
2018
).
39.
M. L.
Calvisi
,
O.
Lindau
,
J. R.
Blake
, and
A. J.
Szeri
, “
Shape stability and violent collapse of microbubbles in acoustic traveling waves
,”
Phys. Fluids
19
,
047101
(
2007
).
40.
X.
Yao
,
X.
Ye
, and
A.-M.
Zhang
, “
Cavitation bubble in compressible fluid subjected to traveling wave
,”
Acta Phys. Sin.
62
,
244701
(
2013
).
41.
M. P.
Brenner
,
S.
Hilgenfeldt
, and
D.
Lohse
, “
Single-bubble sonoluminescence
,”
Rev. Mod. Phys.
74
,
425
(
2002
).
42.
L. A.
Crum
, “
Bjerknes forces on bubbles in a stationary sound field
,”
J. Acoust. Soc. Am.
57
,
1363
1370
(
1975
).
43.
E. A.
Brujan
,
T.
Noda
,
A.
Ishigami
,
T.
Ogasawara
, and
H.
Takahira
, “
Dynamics of laser-induced cavitation bubbles near two perpendicular rigid walls
,”
J. Fluid Mech.
841
,
28
49
(
2018
).
44.
D.
Wang
,
D.
Guan
,
J.
Su
,
X.
Zheng
, and
G.
Hu
, “
Distinct dynamics of self-propelled bowl-shaped micromotors caused by shape effect: Concave vs convex
,”
Phys. Fluids
33
,
122004
(
2021
).
You do not currently have access to this content.